Construction of Single-valued Solutions for Nonintegrable Systems with the Help of the Painleve Test

The Painleve test is very useful to construct not only the Laurent-series solutions but also the elliptic and trigonometric ones. Such single-valued functions are solutions of some polynomial first order differential equations. To find the elliptic solutions we transform an initial nonlinear differential equation in a nonlinear algebraic system in parameters of the Laurent-series solutions of the initial equation. The number of unknowns in the obtained nonlinear system does not depend on number of arbitrary coefficients of the used first order equation. In this paper we describe the corresponding algorithm, which has been realized in REDUCE and Maple.

[1]  Constructing Solutions for the Generalized Hénon–Heiles System Through the Painlevé Test , 2002, math-ph/0209063.

[2]  Sophie Kowalevski,et al.  Sur le probleme de la rotation d'un corps solide autour d'un point fixe , 1889 .

[3]  Sophie Kowalevski Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe , 1890 .

[4]  R. Conte,et al.  Analytic solitary waves of nonintegrable equations , 2003, nlin/0302051.

[5]  Psi-Series Solutions of the Cubic Henon-Heiles System and Their Convergence , 1999, math/9904186.

[6]  A. Ramani,et al.  In: The Painleve Property: One Century Later , 1999 .

[7]  Robert Conte,et al.  Link between solitary waves and projective Riccati equations , 1992 .

[8]  G. C. Santos Application of finite expansion in elliptic functions to solve differential equations , 1989 .

[9]  M. Briot Théorie des fonctions elliptiques , 1875 .

[10]  On two nonintegrable cases of the generalized Hénon-Heiles system , 2004, math-ph/0402049.

[11]  Robert Conte,et al.  The Painlevé property : one century later , 1999 .

[12]  André Heck,et al.  Introduction to Maple , 1993 .

[13]  J. Weiss Bäcklund transformation and the Henon-Heiles system , 1984 .

[14]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[15]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[16]  André Heck,et al.  Introduction to Maple, 3rd edition , 2003 .

[17]  Engui Fan,et al.  An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinea , 2003 .

[18]  J. Weiss Bäcklund transformation and linearizations of the Henon-Heiles system , 1984 .