A NEW METHOD FOR SIMULATING EDGE-WEAR MECHANICS IN THA RELEVANT TO PATIENT GAIT: A TEN-MILLION CYCLE STUDY WITH 60 MM MOM BEARINGS
暂无分享,去创建一个
There will be occasions when standards and guidelines stymie the development of new methods. For example, the majority of simulator studies utilized the international guideline specifying that cups will be positioned “Anatomically” (ISO-14242), i.e. acetabular liner is positioned above oscillating femoral head (Fig. 1). This can be disadvantageous for studies of “edge wear” in steeply inclined cups (Williams 2008, Leslie 2009, Angadji 2009). Importantly, such an “Anatomical” cup is fixed with respect to the resultant load-axis (Fig. 1d: R). This produces a constant edge-wear throughout the simulator's cycle. Our supposition was that it is more likely patients experience edge-wear intermittently, i.e. at extremes of motion. This intermittent effect can be best replicated with the cup mounted “Inverted” (Fig. 2), the rotating cam allowing precise selection of edge-wear at extreme of motion (Fig. 2c). An advantage of this method is that the wear-pattern in the orbiting cup is now much larger (Bowsher, 2009: x3.8 ratio), making edge-wear easier to achieve. Our hypotheses were that (1) the Inverted test would provide both “normal” and “edge wear” as defined (Clarke, 2015: steep-cup algorithm), (2) MOM wear rates under edge-wear condition would be greater than in standard simulator tests (Bowsher 2016) and (2) intermittent edge-wear of MOM cups (Inverted) would be less severe than in prior Anatomical tests (Williams 2008, Leslie 2009, Angadji 2009).
The 60mm MOM bearings (DJO, Austin TX) were selected on the basis of prior Anatomical study (Bowsher, 2009), were run with cups Inverted, using identical test methods as before, in the orbital simulator. Wear-rates in 60mm heads revealed both run-in and steady-state wear phases (Fig. 3a). The weight-loss method showed perturbations due to protein contaminants but these appeared of minor concern over 10-million cycles. One cup was damaged during set-up, did not recover, and was not included in the analysis (Fig. 3b). Cup wear rates over 10-million cycles appeared very stable with excellent consistency (Fig. 3c). By end of test, the edge-wearing cups averaged 3.7 times higher wear than mating heads. Overall MOM wear averaged 1.6mm3 per million cycles. Apart from the first 100,000 cycles of run-in, no lubricant changed color during entire test.
In this first study of its kind, we demonstrated both normal and edge-wear wear-patterns in accordance with predictions of the steep-cup algorithm (Clarke 2015), satisfying hypothesis #1. Wear rates with Inverted cups averaged 2.7 times greater wear than those in similar Anatomical study (Bowsher, 2009), satisfying hypothesis #2. The 60mm MOM wear rates Inverted were mid-range to those in the prior steep-cup Anatomical tests (range 1.3 – 1.9mm3 per 106 cycles). This neither satisfied nor eliminated hypothesis #3, perhaps due to confounding effects, i.e. different designs, MOM diameters and methods. In conclusion, the Inverted test in the simulator appears to offer considerable merit, perhaps analogous to patients who experience edge-wear only intermittently. In contrast the Anatomical test mode appears analogous to patients with mal-positioned cups, who therefore walk on the cup rim constantly throughout their gait cycle.