Butterflies: inspiration for solar cells and sunlight water-splitting catalysts

Solar cells and photocatalysts to yield hydrogen are two significant strategies for taking advantage of clean and sustainable solar energy, and their light manipulation and harvesting ability will play a dominant role in their conversion efficiencies. Butterflies demonstrate their brilliant colors due to their wonderful skills of light manipulation, originating intrinsically from their elaborate architectures. We review the inspiration of butterflies for solar cells and sunlight water-splitting catalysts, focusing on the nipple arrays in butterfly compound eyes, as well as ridge and hole arrays, and the photonic crystal structures in butterfly wing scales. After giving a brief introduction to the typical architectures, we reveal the physical principles lying behind antireflection of compound eyes and black scales and iridescence of wing scales, respective prototypes are extracted and highlighted for the design and fabrication of solar cells and sunlight water-splitting catalysts. We conclude by reviewing the prospects for the integration of these prototypes and the appropriate materials for solar energy, which is the product of an intimate conversation between humanity and nature, as well as close cooperation between scientists from diverse fields.

[1]  Jong Hyun Choi,et al.  Biomimetic strategies for solar energy conversion: a technical perspective , 2011 .

[2]  F. Sordello,et al.  Photocatalytic metamaterials: TiO2 inverse opals. , 2011, Chemical communications.

[3]  V. Fthenakis,et al.  A solar grand plan. , 2008, Scientific American.

[4]  L. Biró,et al.  Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae). , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Xiaodong He,et al.  High emissivity coatings for high temperature application: Progress and prospect , 2009 .

[6]  Brian A. Gregg,et al.  New perylenes for dye sensitization of TiO2 , 2002 .

[7]  Jccm Boukje Huijben,et al.  26.1% thin-film GaAs solar cell using epitaxial lift-off , 2009 .

[8]  B. Su,et al.  Insight into cellular response of plant cells confined within silica-based matrices. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[9]  Di Zhang,et al.  Biotemplated materials for sustainable energy and environment: current status and challenges. , 2011, ChemSusChem.

[10]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[11]  Heon Lee,et al.  Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography , 2011 .

[12]  J. Zi,et al.  Coloration strategies in peacock feathers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Antireflective property of thin film a-Si solar cell structures with graded refractive index structure. , 2011, Optics express.

[14]  Fu-Ren F. Fan,et al.  Rapid Screening of Effective Dopants for Fe2O3 Photocatalysts with Scanning Electrochemical Microscopy and Investigation of Their Photoelectrochemical Properties , 2009 .

[15]  S. Kinoshita,et al.  Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  A. Corma,et al.  Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: from subnanometric to submillimetric length scale. , 2008, Physical chemistry chemical physics : PCCP.

[17]  A. Parker,et al.  A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990) , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  L. Biró,et al.  Living photonic crystals: Butterfly scales — Nanostructure and optical properties , 2007 .

[19]  R. Sambles,et al.  Sculpted-multilayer optical effects in two species of Papilio butterfly. , 2001, Applied optics.

[20]  Suresh Narayanan,et al.  Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales , 2010, Proceedings of the National Academy of Sciences.

[21]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[22]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[23]  R. Wootton,et al.  Structural colour: Now you see it — now you don't , 2001, Nature.

[24]  R. Corkery,et al.  Inorganic chiral 3-D photonic crystals with bicontinuous gyroid structure replicated from butterfly wing scales. , 2011, Chemical communications.

[25]  M. Yoshikawa,et al.  Fabrication and characterization of C-doped anatase TiO2 photocatalysts , 2004 .

[26]  G. Boschloo,et al.  Porous One‐Dimensional Photonic Crystals Improve the Power‐Conversion Efficiency of Dye‐Sensitized Solar Cells , 2009 .

[27]  B. K. Dutta,et al.  Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. , 2004, Journal of hazardous materials.

[28]  K. Sun,et al.  Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells. , 2011, Optics express.

[29]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[30]  István Bársony,et al.  Efficiency improvement by porous silicon coating of multicrystalline solar cells , 1997 .

[31]  Jingxia Wang,et al.  Enhancement of photochemical hydrogen evolution over Pt-loaded hierarchical titania photonic crystal , 2010 .

[32]  V. Keller,et al.  Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts , 2003 .

[33]  A. Rutherford,et al.  Artificial photosynthetic systems. Using light and water to provide electrons and protons for the synthesis of a fuel , 2011 .

[34]  Xianzhi Fu,et al.  Organic semiconductor for artificial photosynthesis: water splitting into hydrogen by a bioinspired C3N3S3polymer under visible light irradiation , 2011 .

[35]  Masaaki Kitano,et al.  Recent developments in titanium oxide-based photocatalysts , 2007 .

[36]  Krisztián Kertész,et al.  Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  J. Yu,et al.  Bioinspired parabola subwavelength structures for improved broadband antireflection. , 2010, Small.

[38]  M. Dissanayake,et al.  A novel gel polymer electrolyte based on polyacrylonitrile (PAN) and its application in a solar cell , 2002 .

[39]  Bénédicte Lebeau,et al.  Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. , 2002, Chemical reviews.

[40]  D. Stavenga,et al.  Light on the moth-eye corneal nipple array of butterflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[41]  W. Lubitz,et al.  Hydrogen: an overview. , 2007, Chemical reviews.

[42]  Avelino Corma,et al.  Hierarchically mesostructured doped CeO2 with potential for solar-cell use , 2004, Nature materials.

[43]  N Nishida,et al.  Antireflection effect in ultrahigh spatial-frequency holographic relief gratings. , 1987, Applied optics.

[44]  Kazuhiro Takanabe,et al.  Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. , 2010, Angewandte Chemie.

[45]  Lei Jiang,et al.  Bio-inspired design of multiscale structures for function integration , 2011 .

[46]  Jinhua Ye,et al.  Crystal structure of silver metagermanate, Ag2GeO3 , 2010, Powder Diffraction.

[47]  Amit Lal,et al.  High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. , 2010, Nano letters.

[48]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[49]  P Vukusic,et al.  Physical methods for investigating structural colours in biological systems , 2009, Journal of The Royal Society Interface.

[50]  D. Stavenga,et al.  Gyroid cuticular structures in butterfly wing scales: biological photonic crystals , 2007, Journal of The Royal Society Interface.

[51]  Liejin Guo,et al.  A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure. , 2006, The journal of physical chemistry. B.

[52]  E. Fanizza,et al.  Role of Metal Nanoparticles in TiO2/Ag Nanocomposite-Based Microheterogeneous Photocatalysis , 2004 .

[53]  J. Huxley,et al.  The coloration of Papilio zalmoxis and P. antimachus, and the discovery of Tyndall blue in butterflies , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[54]  J. Barber Photosynthetic energy conversion: natural and artificial. , 2009, Chemical Society reviews.

[55]  D. Pine,et al.  Photonic Crystals from Emulsion Templates , 2001 .

[56]  R. Friend,et al.  Dye-sensitized solar cell based on a three-dimensional photonic crystal. , 2010, Nano letters.

[57]  J. Yu,et al.  Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells , 2011 .

[58]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[59]  Jiao Xu,et al.  Novel N−F-Codoped TiO2 Inverse Opal with a Hierarchical Meso-/Macroporous Structure: Synthesis, Characterization, and Photocatalysis , 2010 .

[60]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[61]  P. Vukusic,et al.  Directionally Controlled Fluorescence Emission in Butterflies , 2005, Science.

[62]  L. Poladian,et al.  The chiral structure of porous chitin within the wing-scales of Callophrys rubi. , 2011, Journal of structural biology.

[63]  A. Heeger,et al.  Polyacetylene, (CH)x: Photoelectrochemical solar cell , 1980 .

[64]  C. Jin,et al.  Observation of phase shifts in a vertical cavity quantum dot switch , 2011 .

[65]  C. Ferekides,et al.  Thin‐film CdS/CdTe solar cell with 15.8% efficiency , 1993 .

[66]  R Bouffaron,et al.  Enhanced antireflecting properties of micro-structured top-flat pyramids. , 2008, Optics express.

[67]  A. Ennaoui,et al.  High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers , 2001 .

[68]  Di Zhang,et al.  Biomorphic mineralization: From biology to materials , 2009 .

[69]  T. Balaban,et al.  On the way to biomimetic dye aggregate solar cells , 2011 .

[70]  B. Su,et al.  Insights into hierarchically meso–macroporous structured materials , 2006 .

[71]  Peter Vukusic,et al.  Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies , 2007, Proceedings of the Royal Society B: Biological Sciences.

[72]  Di Zhang,et al.  Super black and ultrathin amorphous carbon film inspired by anti-reflection architecture in butterfly wing , 2011 .

[73]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[74]  S. Glunz,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency , 2004 .

[75]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[76]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[77]  H De Raedt,et al.  Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi , 2010, Journal of The Royal Society Interface.

[78]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[79]  Tarek A. Kandiel,et al.  Bi(2) WO(6) inverse opals: facile fabrication and efficient visible-light-driven photocatalytic and photoelectrochemical water-splitting activity. , 2011, Small.

[80]  Georg von Freymann,et al.  Effect of disorder on the optically amplified photocatalytic efficiency of titania inverse opals. , 2007, Journal of the American Chemical Society.

[81]  Daniel Feuermann,et al.  High-concentration photovoltaic designs based on miniature parabolic dishes , 2001 .

[82]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[83]  Di Zhang,et al.  Hydrogen evolution via sunlight water splitting on an artificial butterfly wing architecture. , 2011, Physical chemistry chemical physics : PCCP.

[84]  M. Gu,et al.  Photocatalytic activity of bismuth germanate Bi12GeO20 powders , 2006 .

[85]  Jensen Li,et al.  Direct and Seamless Coupling of TiO2 Nanotube Photonic Crystal to Dye‐Sensitized Solar Cell: A Single‐Step Approach , 2011, Advanced materials.

[86]  Takayuki Hoshino,et al.  Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure , 2004 .

[87]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[88]  Robert Miles,et al.  Photovoltaic solar cells: Choice of materials and production methods , 2006 .

[89]  Alex B. F. Martinson,et al.  Advancing beyond current generation dye-sensitized solar cells , 2008 .

[90]  Michael H. Bartl,et al.  Biotemplating routes to three-dimensional photonic crystals , 2011 .

[91]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[92]  Rolf Brendel,et al.  19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon , 2012 .

[93]  J. Sambles,et al.  Structurally assisted blackness in butterfly scales , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[94]  D. Stavenga,et al.  Evolution of color and vision of butterflies. , 2006, Arthropod structure & development.

[95]  S. Maier,et al.  Three‐Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self‐Assembled Chiral Gyroid Networks , 2011 .

[96]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[97]  J. Zeil,et al.  Butterfly wing colours: scale beads make white pierid wings brighter , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[98]  Martin A. Green,et al.  Solar cell efficiency tables (Version 38) , 2011 .

[99]  B. Rech,et al.  Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells , 1999 .

[100]  B. Ohtani,et al.  Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation , 2010 .

[101]  Gary Cook,et al.  Exact replication of biological structures by chemical vapor deposition of silica. , 2003, Angewandte Chemie.

[102]  Alain Fave,et al.  Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching , 2006 .

[103]  Di Zhang,et al.  Art of blackness in butterfly wings as natural solar collector , 2011 .

[104]  L. Ge,et al.  Preparation and characterization of silver and indium vanadate co-doped TiO2 thin films as visible-light-activated photocatalyst , 2006 .

[105]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[106]  P. Vukusic,et al.  A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves , 2009, Journal of The Royal Society Interface.

[107]  Bao-Lian Su,et al.  Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications. , 2011, Chemical communications.

[108]  Orlin D. Velev,et al.  Structured porous materials via colloidal crystal templating: from inorganic oxides to metals , 2000 .