Radiation transport modeling using extended quadrature method of moments

Abstract The radiative transfer equation describes the propagation of radiation through a material medium. While it provides a highly accurate description of the radiation field, the large phase space on which the equation is defined makes it numerically challenging. As a consequence, significant effort has gone into the development of accurate approximation methods. Recently, an extended quadrature method of moments (EQMOM) has been developed to solve univariate population balance equations, which also have a large phase space and thus face similar computational challenges. The distinct advantage of the EQMOM approach over other moment methods is that it generates moment equations that are consistent with a positive phase space density and has a moment inversion algorithm that is fast and efficient. The goal of the current paper is to present the EQMOM method in the context of radiation transport, to discuss advantages and disadvantages, and to demonstrate its performance on a set of standard one-dimensional benchmark problems that encompass optically thin, thick, and transition regimes. Special attention is given in the implementation to the issue of realizability—that is, consistency with a positive phase space density. Numerical results in one dimension are promising and lay the foundation for extending the same framework to multiple dimensions.

[1]  Volker John,et al.  On the efficiency and robustness of the core routine of the quadrature method of moments (QMOM) , 2012 .

[2]  Rochan Upadhyay Evaluation of the use of the Chebyshev algorithm with the quadrature method of moments for simulating aerosol dynamics , 2012 .

[3]  D. Mihalas,et al.  Foundations of Radiation Hydrodynamics , 1985 .

[4]  An De Sen Hypersonic and high temperature gas dynamics , 2013 .

[5]  F. Laurent,et al.  An extended quadrature method of moments for population balance equations , 2003 .

[6]  Philip J. Smith,et al.  Predicting Radiative Transfer in Axisymmetric Cylindrical Enclosures Using the Discrete Ordinates Method , 1988 .

[7]  Holger Dette,et al.  The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis , 1997 .

[8]  Thomas A. Brunner,et al.  Forms of Approximate Radiation Transport , 2002 .

[9]  Ryan G. McClarren,et al.  Simulating Radiative Transfer with Filtered Spherical Harmonics , 2010 .

[10]  Hartmut Hensel,et al.  Deterministic model for dose calculation in photon radiotherapy , 2006, Physics in medicine and biology.

[11]  Gordon L. Olson,et al.  An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium , 1997 .

[12]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[13]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[14]  Rodney O. Fox,et al.  A quadrature-based third-order moment method for dilute gas-particle flows , 2008, J. Comput. Phys..

[15]  T. Vesala Radiative Transfer in the Atmosphere and Ocean , 2003 .

[16]  R. P. Smedley-Stevenson,et al.  Linear and quadratic octahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation , 2005 .

[17]  Bingjing Su,et al.  Variable Eddington Factors and Flux Limiters in Radiative Transfer , 2001 .

[18]  Guriĭ Ivanovich Marchuk,et al.  Numerical Methods in the Theory of Neutron Transport , 1986 .

[19]  Norman J. McCormick,et al.  Discrete Ordinates Solutions for Highly Forward Peaked Scattering , 2004 .

[20]  K. D. Lathrop RAY EFFECTS IN DISCRETE ORDINATES EQUATIONS. , 1968 .

[21]  R Mohan,et al.  A Monte Carlo model of photon beams used in radiation therapy. , 1995, Medical physics.

[22]  I. Lux Monte Carlo Particle Transport Methods: Neutron and Photon Calculations , 1991 .

[23]  R. E. Williamson,et al.  THE PENETRATION OF RADIATION WITH CONSTANT DRIVING TEMPERATURE , 1960 .

[24]  B. Perthame Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .

[25]  Edward W. Larsen,et al.  Advances in Discrete-Ordinates Methodology , 2010 .

[26]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[27]  Rainer Koch,et al.  DISCRETE ORDINATES QUADRATURE SCHEMES FOR MULTIDIMENSIONAL RADIATIVE TRANSFER , 1995 .

[28]  William J. Rider,et al.  Physics-Based Preconditioning and the Newton-Krylov Method for Non-equilibrium Radiation Diffusion , 2000 .

[29]  James Paul Holloway,et al.  Two-dimensional time dependent Riemann solvers for neutron transport , 2005 .

[30]  Ryan G. McClarren,et al.  Positive PN Closures , 2010, SIAM J. Sci. Comput..

[31]  J. G. Bryan,et al.  Introduction to probability and random variables , 1961 .

[32]  Edward W. Larsen,et al.  Asymptotic analysis of radiative transfer problems , 1983 .

[33]  Claude-Gilles Dussap,et al.  A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors , 1995 .

[34]  Zhi Jian Wang,et al.  Realizable high-order finite-volume schemes for quadrature-based moment methods , 2011, J. Comput. Phys..

[35]  C. Yuan,et al.  Conditional quadrature method of moments for kinetic equations , 2011, J. Comput. Phys..

[36]  Michael L. Hall,et al.  Diffusion, P1, and other approximate forms of radiation transport , 2000 .

[37]  J. Wheeler,et al.  Modified moments and Gaussian quadratures , 1974 .

[38]  Frank H. Shu,et al.  The physics of astrophysics. , 1992 .

[39]  Ryan G. McClarren,et al.  Robust and accurate filtered spherical harmonics expansions for radiative transfer , 2010, J. Comput. Phys..

[40]  J. Howell The Monte Carlo Method in Radiative Heat Transfer , 1998 .

[41]  Axel Klar,et al.  Partial Moment Entropy Approximation to Radiative Heat Transfer , 2005 .

[42]  William H. Reed,et al.  New Difference Schemes for the Neutron Transport Equation , 1971 .

[43]  G. I. Bell,et al.  SOLUTION OF THE TRANSPORT EQUATION BY THE Sn METHOD , 1958 .

[44]  Gerassimos A. Athanassoulis,et al.  The truncated Hausdorff moment problem solved by using kernel density functions , 2002 .

[45]  Ryan G. McClarren,et al.  Semi-implicit time integration for PN thermal radiative transfer , 2008, J. Comput. Phys..

[46]  C. D. Levermore,et al.  Relating Eddington factors to flux limiters , 1984 .

[47]  S. M. Deshpande,et al.  A second-order accurate kinetic-theory-based method for inviscid compressible flows , 1986 .

[48]  Axel Klar,et al.  Half-moment closure for radiative transfer equations , 2002 .

[49]  A. Eddington,et al.  The Internal Constitution of the Stars , 1920, Nature.

[50]  J. A. Fleck,et al.  An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport , 1971 .

[51]  William J. Rider,et al.  On consistent time-integration methods for radiation hydrodynamics in the equilibrium diffusion limit: low-energy-density regime , 2001 .

[52]  R. Chaplin NUCLEAR REACTOR THEORY , 2022 .

[53]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[54]  K. D. Lathrop,et al.  DISCRETE ORDINATES ANGULAR QUADRATURE OF THE NEUTRON TRANSPORT EQUATION , 1964 .

[55]  Axel Klar,et al.  Uniform Stability of a Finite Difference Scheme for Transport Equations in Diffusive Regimes , 2002, SIAM J. Numer. Anal..

[56]  D. S. Kershaw,et al.  Flux limiting nature`s own way -- A new method for numerical solution of the transport equation , 1976 .

[57]  William J. Rider,et al.  An efficient nonlinear solution method for non-equilibrium radiation diffusion , 1999 .

[58]  B. Pagel,et al.  Stellar atmospheres , 1978, Nature.

[59]  E. Gelbard,et al.  Monte Carlo Principles and Neutron Transport Problems , 2008 .

[60]  Y. Jaluria,et al.  Zonal Method to Model Radiative Transport in an Optical Fiber Drawing Furnace , 1997 .

[61]  Edward W. Larsen,et al.  The Asymptotic Diffusion Limit of Discretized Transport Problems , 1992 .

[62]  Gautham Krishnamoorthy,et al.  Modeling radiative transfer in photobioreactors for algal growth , 2012 .

[63]  J. Anderson,et al.  Hypersonic and High-Temperature Gas Dynamics , 2019 .

[64]  James Paul Holloway,et al.  One-dimensional Riemann solvers and the maximum entropy closure , 2001 .

[65]  Paul F. Zweifel,et al.  Neutron Transport Theory , 1967 .

[66]  R. Rutten Radiative transfer in stellar atmospheres , 2000 .

[67]  Stefan Rolewicz,et al.  On a problem of moments , 1968 .

[68]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[69]  Rodney O. Fox,et al.  Higher-order quadrature-based moment methods for kinetic equations , 2009, J. Comput. Phys..

[70]  Olivier Desjardins,et al.  A quadrature-based moment method for dilute fluid-particle flows , 2008, J. Comput. Phys..

[71]  G. C. Pomraning,et al.  A flux-limited diffusion theory , 1981 .

[72]  Doyle Knight,et al.  Elements of numerical methods for compressible flows , 2006 .

[73]  Ryan G. McClarren,et al.  Positive P N Closures. , 2010 .

[74]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[75]  Cory D. Hauck,et al.  High-Order Entropy-Based Closures for Linear Transport in Slab Geometries , 2011 .

[76]  N. SIAMJ. AN ASYMPTOTIC-INDUCED SCHEME FOR NONSTATIONARY TRANSPORT EQUATIONS IN THE DIFFUSIVE LIMIT , 1998 .