A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons

MicroRNAs (miRNAs) are evolutionarily conserved, 18- to 25-nucleotide, non–protein coding transcripts that posttranscriptionally regulate gene expression during development. miRNAs also occur in postmitotic cells, such as neurons in the mammalian central nervous system, but their function is less well characterized. We investigated the role of miRNAs in mammalian midbrain dopaminergic neurons (DNs). We identified a miRNA, miR-133b, that is specifically expressed in midbrain DNs and is deficient in midbrain tissue from patients with Parkinson's disease. miR-133b regulates the maturation and function of midbrain DNs within a negative feedback circuit that includes the paired-like homeodomain transcription factor Pitx3. We propose a role for this feedback circuit in the fine-tuning of dopaminergic behaviors such as locomotion.

[1]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[2]  K. Kosik,et al.  Specific MicroRNAs Modulate Embryonic Stem Cell–Derived Neurogenesis , 2006, Stem cells.

[3]  A. Abeliovich,et al.  Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Q. Deng,et al.  Identification of Intrinsic Determinants of Midbrain Dopamine Neurons , 2006, Cell.

[5]  Michael E. Greenberg,et al.  A brain-specific microRNA regulates dendritic spine development , 2006, Nature.

[6]  Kenneth S. Kosik,et al.  The Elegance of the MicroRNAs: A Neuronal Perspective , 2005, Neuron.

[7]  Oliver H. Tam,et al.  Characterization of Dicer-deficient murine embryonic stem cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[9]  Kwang-Soo Kim,et al.  The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons , 2005, Molecular and Cellular Neuroscience.

[10]  Martin Pera,et al.  Transplantation of Human Embryonic Stem Cell–Derived Neural Progenitors Improves Behavioral Deficit in Parkinsonian Rats , 2004, Stem cells.

[11]  L. Greene,et al.  Highly Efficient Small Interfering RNA Delivery to Primary Mammalian Neurons Induces MicroRNA-Like Effects before mRNA Degradation , 2004, The Journal of Neuroscience.

[12]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[13]  T. Tuschl,et al.  Mechanisms of gene silencing by double-stranded RNA , 2004, Nature.

[14]  Oliver Hobert,et al.  MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode , 2004, Nature.

[15]  M. Smidt,et al.  Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra , 2004, Cell and Tissue Research.

[16]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[17]  Kwang-Soo Kim,et al.  ß Federation of European Neuroscience Societies Temporally induced Nurr1 can induce a non-neuronal dopaminergic cell type in embryonic stem cell differentiation , 2022 .

[18]  Nao Chuhma,et al.  Dopamine Neurons Mediate a Fast Excitatory Signal via Their Glutamatergic Synapses , 2004, The Journal of Neuroscience.

[19]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[20]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[21]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[22]  Konstantin Khrapko,et al.  A microRNA array reveals extensive regulation of microRNAs during brain development. , 2003, RNA.

[23]  M. Beal,et al.  Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice , 2003, Nature Biotechnology.

[24]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[25]  V. Ambros MicroRNA Pathways in Flies and Worms Growth, Death, Fat, Stress, and Timing , 2003, Cell.

[26]  Kwang-Soo Kim,et al.  Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. , 2003, Brain research. Molecular brain research.

[27]  T. Perlmann,et al.  Transcriptional Control of Dopamine Neuron Development , 2003, Annals of the New York Academy of Sciences.

[28]  A. Sadikot,et al.  Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons , 2003, Development.

[29]  Robert E. Burke,et al.  Pitx3 is required for development of substantia nigra dopaminergic neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. McKay,et al.  Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease , 2002, Nature.

[31]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[32]  K. Mizuseki,et al.  Induction of Midbrain Dopaminergic Neurons from ES Cells by Stromal Cell–Derived Inducing Activity , 2000, Neuron.

[33]  R. McKay,et al.  Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells , 2000, Nature Biotechnology.

[34]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[35]  J. Ashby References and Notes , 1999 .