Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films.

By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix.

[1]  Koon Gee Neoh,et al.  Polymer electronic memories: Materials, devices and mechanisms , 2008 .

[2]  S. Marder,et al.  A Nonvolatile Organic Memory Device Using ITO Surfaces Modified by Ag‐Nanodots , 2008 .

[3]  Henrique L. Gomes,et al.  Switching in polymeric resistance random-access memories (RRAMS) , 2008 .

[4]  Henrique L. Gomes,et al.  Reproducible resistive switching in nonvolatile organic memories , 2007 .

[5]  Fredrik Jakobsson,et al.  On the switching mechanism in Rose Bengal-based memory devices , 2007 .

[6]  Koon Gee Neoh,et al.  Conformation-Induced Electrical Bistability in Non-conjugated Polymers with Pendant Carbazole Moieties , 2007 .

[7]  Koon Gee Neoh,et al.  Bistable electrical switching and write-once read-many-times memory effect in a donor-acceptor containing polyfluorene derivative and its carbon nanotube composites , 2007 .

[8]  M. Chhowalla,et al.  Stable, three layered organic memory devices from C60 molecules and insulating polymers , 2006 .

[9]  L. Larcom,et al.  Determination of carbon nanotube density by gradient sedimentation. , 2006, Journal of Physical Chemistry B.

[10]  Won-Jae Joo,et al.  Metal filament growth in electrically conductive polymers for nonvolatile memory application. , 2006, The journal of physical chemistry. B.

[11]  Electrical bistability by self-assembled gold nanoparticles in organic diodes , 2006 .

[12]  W. Brittain,et al.  Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite , 2006 .

[13]  D. Suh,et al.  Nonvolatile memory device based on the switching by the all-organic charge transfer complex , 2006 .

[14]  Dago M. de Leeuw,et al.  Switching and filamentary conduction in non-volatile organic memories , 2006 .

[15]  Ricardo Izquierdo,et al.  Carbon nanotube sheets as electrodes in organic light-emitting diodes. , 2006 .

[16]  B. Pradhan,et al.  Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes. , 2006, The journal of physical chemistry. B.

[17]  I. Ivanov,et al.  Carbon nanotube effects on electroluminescence and photovoltaic response in conjugated polymers , 2005 .

[18]  J. Coleman,et al.  Charge transport effects in field emission from carbon nanotube-polymer composites , 2005 .

[19]  Philip M. Rice,et al.  Organic Materials and Thin‐Film Structures for Cross‐Point Memory Cells Based on Trapping in Metallic Nanoparticles , 2005 .

[20]  Zoran D. Popovic,et al.  Memory Effect and Negative Differential Resistance by Electrode‐ Induced Two‐Dimensional Single‐ Electron Tunneling in Molecular and Organic Electronic Devices , 2005 .

[21]  C. Sow,et al.  Field emission properties of N2 and Ar plasma-treated multi-wall carbon nanotubes , 2005 .

[22]  Elsa Reichmanis,et al.  Plastic electronic devices: From materials design to device applications , 2005, Bell Labs Technical Journal.

[23]  J. Kenny,et al.  Novel approaches to developing carbon nanotube based polymer composites: fundamental studies and nanotech applications , 2005 .

[24]  S. Bai,et al.  Light emitting diodes of fully conjugated heterocyclic aromatic rigid-rod polymer doped with multi-wall carbon nanotubes , 2005 .

[25]  Charge transfer induced polarity switching in carbon nanotube transistors. , 2005, Nano letters.

[26]  Zhi‐Xin Guo,et al.  Electrical properties of soluble carbon nanotube/polymer composite films , 2005 .

[27]  N. Hiroshiba,et al.  C60 field effect transistor with electrodes modified by La@C82 , 2004 .

[28]  Zhi‐Xin Guo,et al.  Polymers containing fullerene or carbon nanotube structures , 2004 .

[29]  Gerwin H. Gelinck,et al.  Doped polyaniline polymer fuses: Electrically programmable read-only-memory elements , 2004 .

[30]  Alexander Star,et al.  Nanotube optoelectronic memory devices , 2004 .

[31]  Carsten Rothe,et al.  Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes. , 2004, Journal of the American Chemical Society.

[32]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[33]  S. Möller,et al.  Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories , 2003 .

[34]  Anirban Bandyopadhyay,et al.  Tuning of Organic Reversible Switching via Self‐Assembled Supramolecular Structures , 2003 .

[35]  Zhi‐Xin Guo,et al.  Concise route to functionalized carbon nanotubes , 2003 .

[36]  Peter Strohriegl,et al.  Carbazole-containing polymers: synthesis, properties and applications , 2003 .

[37]  M. A. Vorotyntsev,et al.  Memory effects in functionalized conducting polymer films: titanocene derivatized polypyrrole in contact with THF solutions , 2003 .

[38]  S. Stafström,et al.  Modeling of the dynamics of charge separation in an excited poly(phenylene vinylene)/C-60 system , 2003 .

[39]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[40]  Stephen R. Forrest,et al.  Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers , 2002 .

[41]  F. Raymo Digital processing and communication with molecular switches , 2002 .

[42]  Emmanuel Kymakis,et al.  Single-wall carbon nanotube/conjugated polymer photovoltaic devices , 2002 .

[43]  Christopher A. Mills,et al.  A Memory Effect in the Current-Voltage Characteristic of a Low-Bandgap Conjugated Polymer , 2001 .

[44]  Richard H. Friend,et al.  Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic Devices , 1999 .

[45]  Franco Cacialli,et al.  Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes , 1999 .

[46]  Tatsuo Wada,et al.  Carbazole photorefractive materials , 1998 .

[47]  Fullerene pipes , 1998, Science.

[48]  P. Murgatroyd,et al.  Theory of space-charge-limited current enhanced by Frenkel effect , 1970 .