Ginzburg algebras of triangulated surfaces and perverse schobers

Ginzburg algebras associated to triangulated surfaces provide a means to categorify the cluster algebras of these surfaces. As shown by Ivan Smith, the finite derived category of such a Ginzburg algebra can be embedded into the Fukaya category of the total space of a Lefschetz fibration over the surface. Inspired by this perspective we provide a description of the full derived category in terms of a perverse schober. The main novelty is a gluing formalism describing the Ginzburg algebra as a colimit of certain local Ginzburg algebras associated to discs. As a first application we give a new construction of derived equivalences between these Ginzburg algebras associated to flips of an edge of the triangulation. Finally, we note that the perverse schober as well as the resulting gluing construction can also be defined over the sphere spectrum.

[1]  M. Kapranov,et al.  Perverse Schobers , 2014, 1411.2772.

[2]  M. Kapranov,et al.  Perverse sheaves over real hyperplane arrangements , 2014, 1403.5800.

[3]  Y. Qiu Decorated marked surfaces (part B): topological realizations , 2018 .

[4]  Bernard Leclerc,et al.  Cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[5]  Christopher Brav,et al.  Relative Calabi–Yau structures , 2016, Compositio Mathematica.

[6]  Claire Amiot Cluster categories for algebras of global dimension 2 and quivers with potential , 2008, 0805.1035.

[7]  B. Keller Cluster algebras and derived categories , 2012, 1202.4161.

[8]  D. Thurston,et al.  Cluster Algebras and Triangulated Surfaces Part II: Lambda Lengths , 2012, Memoirs of the American Mathematical Society.

[9]  B. Keller,et al.  Derived equivalences from mutations of quivers with potential , 2009, 0906.0761.

[11]  M. Kapranov,et al.  Triangulated surfaces in triangulated categories , 2013, 1306.2545.

[12]  D. Labardini-Fragoso,et al.  Quivers with potentials associated to triangulated surfaces , 2008, 0803.1328.

[13]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[14]  Matthew Pressland Mutation of frozen Jacobian algebras , 2018, 1810.01179.

[15]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[16]  Alek Vainshtein,et al.  Cluster algebras and Weil-Petersson forms , 2003 .

[17]  Cluster χ-varieties, amalgamation, and Poisson—Lie groups , 2005, math/0508408.

[18]  L. Hesselholt,et al.  Higher Algebra , 1937, Nature.

[19]  A. Blumberg,et al.  A universal characterization of higher algebraic K-theory , 2010, 1001.2282.

[20]  C. Rezk,et al.  SPECTRAL ALGEBRAIC GEOMETRY , 2020 .

[21]  Giovanni Faonte Simplicial nerve of an A-infinity category , 2013, 1312.2127.

[22]  Y. Qiu,et al.  Decorated marked surfaces II: Intersection numbers and dimensions of Homs , 2014, Transactions of the American Mathematical Society.

[23]  Victor Ginzburg Calabi-Yau algebras , 2006 .

[24]  M. Abouzaid A cotangent fibre generates the Fukaya category , 2010, 1003.4449.

[25]  Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.

[26]  B. Keller,et al.  Deformed Calabi–Yau completions , 2009, 0908.3499.

[27]  Tobias Dyckerhoff,et al.  Spherical adjunctions of stable $\infty$-categories and the relative S-construction , 2021, 2106.02873.

[28]  M. Kapranov,et al.  Crossed simplicial groups and structured surfaces , 2014, 1403.5799.

[29]  V. Hinich Dwyer-Kan localization revisited , 2013, 1311.4128.

[30]  C. Geiss,et al.  The representation type of Jacobian algebras , 2013, 1308.0478.

[31]  Tobias Dyckerhoff A categorified Dold-Kan correspondence , 2017, Selecta Mathematica.

[32]  Cluster ensembles, quantization and the dilogarithm , 2003, math/0311245.

[33]  M. Kapranov,et al.  Perverse sheaves and graphs on surfaces , 2016, 1601.01789.

[34]  I. Smith Quiver algebras as Fukaya categories , 2013, 1309.0452.

[35]  Merlin Christ Spherical Monadic Adjunctions of Stable Infinity Categories , 2020, International mathematics research notices.

[36]  E. Riehl,et al.  Six model structures for DG-modules over DGAs: model category theory in homological action , 2013, 1310.1159.

[37]  Joydeep Ghosh,et al.  Cluster ensembles , 2011, Data Clustering: Algorithms and Applications.

[38]  Y. Qiu,et al.  Cluster categories for marked surfaces: punctured case , 2013, Compositio Mathematica.

[39]  Sergey Fomin,et al.  Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006 .

[40]  Aaron Mazel-Gee Quillen adjunctions induce adjunctions of quasicategories , 2015, 1501.03146.

[41]  A. Polishchuk,et al.  Derived equivalences of gentle algebras via Fukaya categories , 2018, Mathematische Annalen.