Ginzburg algebras of triangulated surfaces and perverse schobers
暂无分享,去创建一个
[1] M. Kapranov,et al. Perverse Schobers , 2014, 1411.2772.
[2] M. Kapranov,et al. Perverse sheaves over real hyperplane arrangements , 2014, 1403.5800.
[3] Y. Qiu. Decorated marked surfaces (part B): topological realizations , 2018 .
[4] Bernard Leclerc,et al. Cluster algebras , 2014, Proceedings of the National Academy of Sciences.
[5] Christopher Brav,et al. Relative Calabi–Yau structures , 2016, Compositio Mathematica.
[6] Claire Amiot. Cluster categories for algebras of global dimension 2 and quivers with potential , 2008, 0805.1035.
[7] B. Keller. Cluster algebras and derived categories , 2012, 1202.4161.
[8] D. Thurston,et al. Cluster Algebras and Triangulated Surfaces Part II: Lambda Lengths , 2012, Memoirs of the American Mathematical Society.
[9] B. Keller,et al. Derived equivalences from mutations of quivers with potential , 2009, 0906.0761.
[11] M. Kapranov,et al. Triangulated surfaces in triangulated categories , 2013, 1306.2545.
[12] D. Labardini-Fragoso,et al. Quivers with potentials associated to triangulated surfaces , 2008, 0803.1328.
[13] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.
[14] Matthew Pressland. Mutation of frozen Jacobian algebras , 2018, 1810.01179.
[15] J. Lurie. Higher Topos Theory , 2006, math/0608040.
[16] Alek Vainshtein,et al. Cluster algebras and Weil-Petersson forms , 2003 .
[17] Cluster χ-varieties, amalgamation, and Poisson—Lie groups , 2005, math/0508408.
[18] L. Hesselholt,et al. Higher Algebra , 1937, Nature.
[19] A. Blumberg,et al. A universal characterization of higher algebraic K-theory , 2010, 1001.2282.
[20] C. Rezk,et al. SPECTRAL ALGEBRAIC GEOMETRY , 2020 .
[21] Giovanni Faonte. Simplicial nerve of an A-infinity category , 2013, 1312.2127.
[22] Y. Qiu,et al. Decorated marked surfaces II: Intersection numbers and dimensions of Homs , 2014, Transactions of the American Mathematical Society.
[23] Victor Ginzburg. Calabi-Yau algebras , 2006 .
[24] M. Abouzaid. A cotangent fibre generates the Fukaya category , 2010, 1003.4449.
[25] Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.
[26] B. Keller,et al. Deformed Calabi–Yau completions , 2009, 0908.3499.
[27] Tobias Dyckerhoff,et al. Spherical adjunctions of stable $\infty$-categories and the relative S-construction , 2021, 2106.02873.
[28] M. Kapranov,et al. Crossed simplicial groups and structured surfaces , 2014, 1403.5799.
[29] V. Hinich. Dwyer-Kan localization revisited , 2013, 1311.4128.
[30] C. Geiss,et al. The representation type of Jacobian algebras , 2013, 1308.0478.
[31] Tobias Dyckerhoff. A categorified Dold-Kan correspondence , 2017, Selecta Mathematica.
[32] Cluster ensembles, quantization and the dilogarithm , 2003, math/0311245.
[33] M. Kapranov,et al. Perverse sheaves and graphs on surfaces , 2016, 1601.01789.
[34] I. Smith. Quiver algebras as Fukaya categories , 2013, 1309.0452.
[35] Merlin Christ. Spherical Monadic Adjunctions of Stable Infinity Categories , 2020, International mathematics research notices.
[36] E. Riehl,et al. Six model structures for DG-modules over DGAs: model category theory in homological action , 2013, 1310.1159.
[37] Joydeep Ghosh,et al. Cluster ensembles , 2011, Data Clustering: Algorithms and Applications.
[38] Y. Qiu,et al. Cluster categories for marked surfaces: punctured case , 2013, Compositio Mathematica.
[39] Sergey Fomin,et al. Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006 .
[40] Aaron Mazel-Gee. Quillen adjunctions induce adjunctions of quasicategories , 2015, 1501.03146.
[41] A. Polishchuk,et al. Derived equivalences of gentle algebras via Fukaya categories , 2018, Mathematische Annalen.