Hippocampal pyramidal cells: the reemergence of cortical lamination

The increasing resolution of tract-tracing studies has led to the definition of segments along the transverse axis of the hippocampal pyramidal cell layer, which may represent functionally defined elements. This review will summarize evidence for a morphological and functional differentiation of pyramidal cells along the radial (deep to superficial) axis of the cell layer. In many species, deep and superficial sublayers can be identified histologically throughout large parts of the septotemporal extent of the hippocampus. Neurons in these sublayers are generated during different periods of development. During development, deep and superficial cells express genes (Sox5, SatB2) that also specify the phenotypes of superficial and deep cells in the neocortex. Deep and superficial cells differ neurochemically (e.g. calbindin and zinc) and in their adult gene expression patterns. These markers also distinguish sublayers in the septal hippocampus, where they are not readily apparent histologically in rat or mouse. Deep and superficial pyramidal cells differ in septal, striatal, and neocortical efferent connections. Distributions of deep and superficial pyramidal cell dendrites and studies in reeler or sparsely GFP-expressing mice indicate that this also applies to afferent pathways. Histological, neurochemical, and connective differences between deep and superficial neurons may correlate with (patho-) physiological phenomena specific to pyramidal cells at different radial locations. We feel that an appreciation of radial subdivisions in the pyramidal cell layer reminiscent of lamination in other cortical areas may be critical in the interpretation of studies of hippocampal anatomy and function.

[1]  K. Schaffer Beitrag zur Histologie der Ammonshornformation , 1892 .

[2]  O. Swezy THE ALBINO RAT. , 1928, Science.

[3]  A. Abbie,et al.  The relations of the fascia dentata, hippocampus and neocortex, and the nature of the subiculum , 1938 .

[4]  W. Krieg Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas , 1946, The Journal of comparative neurology.

[5]  T. Blackstad Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination , 1956, The Journal of comparative neurology.

[6]  J. D. Boyd,et al.  Handbuch der mikroskopischen Anatomie des Menschen. , 1958 .

[7]  W. Möllendorff,et al.  Handbuch der Mikroskopischen Anatomie des Menschen , 1958 .

[8]  W. Krieg Connections of the cerebral cortex , 1963 .

[9]  J. B. Angevine Time of neuron origin in the hippocampal region. An autoradiographic study in the mouse. , 1965, Experimental neurology. Supplement.

[10]  V. Caviness Time of neuron origin in the hippocampus and dentate gyrus of normal and reeler mutant mice: An autoradiographic analysis , 1973, The Journal of comparative neurology.

[11]  J. E. Vaughn,et al.  Genetically‐associated variations in the development of hippocampal pyramidal neurons may produce differences in mossy fiber connectivity , 1977, The Journal of comparative neurology.

[12]  W. Cowan,et al.  An autoradiographic study of the organization of intrahippocampal association pathways in the rat , 1978, The Journal of comparative neurology.

[13]  W. Cowan,et al.  The development of the hippocampus and dentate gyrus in normal and reeler mice , 1979, The Journal of comparative neurology.

[14]  R. Chronister,et al.  Organization of projection neurons of the hippocampus , 1979, Experimental Neurology.

[15]  P. Morgane,et al.  The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (rhinencephalon): The archicortex , 1979, Brain Research Bulletin.

[16]  W. Cowan,et al.  The morphology of the hippocampus and dentate gyrus in normal and reeler mice , 1979, The Journal of comparative neurology.

[17]  W. Cowan,et al.  Evidence that the commissural, associational and septal projections of the regio inferior of the hippocampus arise from the same neurons , 1980, Brain Research.

[18]  S. Bayer,et al.  Development of the hippocampal region in the rat I. Neurogenesis examined with 3H‐thymidine autoradiography , 1980, The Journal of comparative neurology.

[19]  The Anatomy of the Brain of the Bottlenose Dolphin, (Tursiops truncatus). Rhinic Lobe (Rhinencephalon): The Archicortex , 1980, Peptides.

[20]  F. Dudek,et al.  Coupling in rat hippocampal slices: Dye transfer between CA1 pyramidal cells , 1982, Brain Research Bulletin.

[21]  P. Schwartzkroin,et al.  Electrotonic and dye coupling in hippocampal CA1 pyramidal cells in vitro , 1982, Neuroscience.

[22]  I. Smart Radial unit analysis of hippocampal histogenesis in the mouse. , 1982, Journal of anatomy.

[23]  J. Miller,et al.  Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat , 1982, Brain Research.

[24]  S. Ih Radial unit analysis of hippocampal histogenesis in the mouse. , 1982 .

[25]  D. Prince,et al.  Variations in electrophysiological properties of hippocampal neurons in different subfields , 1982, Brain Research.

[26]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[27]  R. Nowakowski,et al.  The mode of inheritance of a defect in lamination in the hippocampus of BALB/c mice. , 1984, Journal of neurogenetics.

[28]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[29]  T. Davis,et al.  Dendritic arbors and dendritic excrescences of abnormally positioned neurons in area CA3c of mice carrying the mutation “Hippocampal lamination defect” , 1985, The Journal of comparative neurology.

[30]  J. P. Ireland,et al.  Comparative Neurobiology , 1986 .

[31]  Douglas L. Rosene,et al.  The Hippocampal Formation of the Primate Brain , 1987 .

[32]  M. Thomasset,et al.  The comparative immunocytochemical distribution of 28 kDa cholecalcin (CaBP) in the hippocampus of rat, guinea pig and hedgehog , 1987, Brain Research.

[33]  Nobuaki Tamamaki,et al.  Columnar organization in the subiculum formed by axon branches originating from single CA1 pyramidal neurons in the rat hippocampus , 1987, Brain Research.

[34]  L. Slomianka,et al.  Distribution of acetylcholinesterase in the hippocampal region of the mouse: II. Subiculum and hippocampus , 1987, The Journal of comparative neurology.

[35]  Stanley J. Watson,et al.  The rat brain in stereotaxic coordinates (2nd edn) by George Paxinos and Charles Watson, Academic Press, 1986. £40.00/$80.00 (264 pages) ISBN 012 547 6213 , 1987, Trends in Neurosciences.

[36]  M. Thomasset,et al.  Cholecalcin (28-kDa calcium-binding protein) in the rat hippocampus: development in normal animals and in altered thyroid states. An immunocytochemical study. , 1987, Developmental biology.

[37]  T. van Groen,et al.  Species differences in hippocampal commissural connections: Studies in rat, guinea pig, rabbit, and cat , 1988, The Journal of comparative neurology.

[38]  H Eichenbaum,et al.  The organization of spatial coding in the hippocampus: a study of neural ensemble activity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[40]  H. Scharfman,et al.  Protection of dentate hilar cells from prolonged stimulation by intracellular calcium chelation. , 1989, Science.

[41]  J. Juraska,et al.  The dendritic morphology of pyramidal neurons in the rat hippocampal CA3 area. II. Effects of gender and the environment , 1989, Brain Research.

[42]  A. Mcgeorge,et al.  The organization of the projection from the cerebral cortex to the striatum in the rat , 1989, Neuroscience.

[43]  M. Celio,et al.  Calbindin D-28k and parvalbumin in the rat nervous system , 1990, Neuroscience.

[44]  D. Amaral,et al.  Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat , 1990, The Journal of comparative neurology.

[45]  Nobuaki Tamamaki,et al.  Disposition of the slab‐like modules formed by axon branches originating from single CA1 pyramidal neurons in the rat hippocampus , 1990, The Journal of comparative neurology.

[46]  A. Nuñez,et al.  In vivo electrophysiological analysis of lucifer yellow-coupled hippocampal pyramids , 1990, Experimental Neurology.

[47]  J. Altman,et al.  Prolonged sojourn of developing pyramidal cells in the intermediate zone of the hippocampus and their settling in the stratum pyramidale , 1990, The Journal of comparative neurology.

[48]  David K. Bilkey,et al.  Variation in electrophysiology and morphology of hippocampal CA3 pyramidal cells , 1990, Brain Research.

[49]  M. Witter,et al.  Heterogeneity in the Dorsal Subiculum of the Rat. Distinct Neuronal Zones Project to Different Cortical and Subcortical Targets , 1990, The European journal of neuroscience.

[50]  I. Holm,et al.  Histochemical demonstration of zinc in the hippocampal region of the domestic pig: II. Subiculum and hippocampus , 1991, The Journal of comparative neurology.

[51]  M. Mattson,et al.  Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-1328k in cultured hippocampal neurons , 1991, Neuron.

[52]  E. Buhl,et al.  Cytoarchitecture, neuronal composition, and entorhinal afferents of the flying fox hippocampus , 1991, Hippocampus.

[53]  T. F. Freund,et al.  Parvalbumin‐ and calbindin D28K‐immunoreactive neurons in the hippocampal formation of the macaque monkey , 1991, The Journal of comparative neurology.

[54]  F. Geneser Distribution of acetylcholinesterase in the hippocampal region of the rabbit: II. Subiculum and hippocampus , 1987, The Journal of comparative neurology.

[55]  K G Baimbridge,et al.  Exposure to high-pH medium increases the incidence and extent of dye coupling between rat hippocampal CA1 pyramidal neurons in vitro , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  D. Amaral,et al.  Organization of CA1 projections to the subiculum: A PHA‐L analysis in the rat , 1991, Hippocampus.

[57]  N. Barbaro,et al.  Calcium‐binding protein (calbindin‐D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus , 1991, The Journal of comparative neurology.

[58]  H. Mclennan,et al.  Bursting response to current‐evoked depolarization in rat ca1 pyramidal neurons is correlated with lucifer yellow dye coupling but not with the presence of calbindin‐D28k , 1991, Synapse.

[59]  Baimbridge Kg Calcium-binding proteins in the dentate gyrus. , 1992 .

[60]  L. Slomianka Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat , 1992, Neuroscience.

[61]  Calcium-binding proteins in the dentate gyrus. , 1992, Epilepsy research. Supplement.

[62]  T. Freund,et al.  Pyramidal neurons are immunoreactive for calbindin D28k in the CA1 subfield of the human hippocampus , 1992, Neuroscience Letters.

[63]  Larry W. Swanson,et al.  Brain Maps: Structure of the Rat Brain , 1992 .

[64]  J. Larson,et al.  Theta burst stimulation is optimal for induction of LTP at both apical and basal dendritic synapses on hippocampal CA1 neurons , 1992, Brain Research.

[65]  R. Nowakowski,et al.  Cytoarchitectonic abnormalities in hippocampal formation and cerebellum of dreher mutant mouse. , 1992, Brain research. Developmental brain research.

[66]  I Ferrer,et al.  Distribution, morphological features, and synaptic connections of parvalbumin‐ and calbindin D28k‐immunoreactive neurons in the human hippocampal formation , 1993, The Journal of comparative neurology.

[67]  D. Amaral Emerging principles of intrinsic hippocampal organization , 1993, Current Opinion in Neurobiology.

[68]  T. Kaibara,et al.  Basal versus apical dendritic long-term potentiation of commissural afferents to hippocampal CA1: a current-source density study , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  G. Lynch,et al.  Origins of the variations in long‐term potentiation between synapses in the basal versus apical dendrites of hippocampal neurons , 1994, Hippocampus.

[70]  A. Ishida,et al.  An electrophysiological and immunohistochemical study of the hippocampus of the reeler mutant mouse , 1994, Brain Research.

[71]  D. Choi,et al.  Zinc toxicity on cultured cortical neurons: Involvement of N-methyl-d-aspartate receptors , 1994, Neuroscience.

[72]  Masahiko Takada,et al.  Topographical organization of subicular neurons projecting to subcortical regions , 1994, Brain Research Bulletin.

[73]  P. Carlen,et al.  Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  N. Bannister,et al.  Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns , 1995, The Journal of comparative neurology.

[75]  N. Tamamaki,et al.  Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats , 1995, The Journal of comparative neurology.

[76]  M. Morris,et al.  Correlation of anoxic neuronal responses and calbindin‐D28k localization in stratum pyramidale of rat hippocampus , 1995, Hippocampus.

[77]  Long-term potentiation at the apical and basal dendritic synapses of CA1 after local stimulation in behaving rats. , 1995, Journal of neurophysiology.

[78]  R. Nowakowski,et al.  Morphological abnormalities in the hippocampus of the weaver mutant mouse , 1995, Brain Research.

[79]  T. Ono,et al.  Ischemic neuronal damage specific to monkey hippocampus: Histological investigation , 1995, Brain Research Bulletin.

[80]  H. Barbas,et al.  Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey , 1995, Hippocampus.

[81]  C. Marcuccilli,et al.  Regulation of excitatory transmission at hippocampal synapses by calbindin D28k. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J. Deuchars,et al.  CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling , 1996, Neuroscience.

[83]  L. Swanson,et al.  Structural Evidence for Functional Domains in the Rat Hippocampus , 1996, Science.

[84]  Heinz Stephan,et al.  Comparative Neurobiology in Chiroptera , 1996 .

[85]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[86]  Lucien T. Thompson,et al.  Age-related loss of calcium binding proteins in rabbit hippocampus , 1996, Neurobiology of Aging.

[87]  P. Hof,et al.  Distribution of neurofilament protein and calcium-binding proteins parvalbumin, calbindin, and calretinin in the canine hippocampus , 1996, Journal of Chemical Neuroanatomy.

[88]  L. Slomianka,et al.  Postnatal development of zinc‐containing cells and neuropil in the hippocampal region of the mouse , 1997, Hippocampus.

[89]  L. Slomianka,et al.  Zinc-containing neurons are distinct from GABAergic neurons in the telencephalon of the rat , 1997, Anatomy and Embryology.

[90]  C. Walsh,et al.  Birthdate and Cell Marker Analysis of Scrambler: A Novel Mutation Affecting Cortical Development with a Reeler-Like Phenotype , 1997, The Journal of Neuroscience.

[91]  I. Módy,et al.  Calbindin-D28k fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice , 1998, Neuroscience.

[92]  M. Mattson,et al.  Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[93]  D. Ledbetter,et al.  Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality , 1998, Nature Genetics.

[94]  T. Yamauchi Impairment of Consciousness During Epileptic Seizures with Special Reference to Neuronal Mechanisms , 1998, Epilepsia.

[95]  R. Schwarcz,et al.  Focal Microinjection of γ-Acetylenic GABA into the Rat Entorhinal Cortex: Behavioral and Electroencephalographic Abnormalities and Preferential Neuron Loss in Layer III , 1998, Experimental Neurology.

[96]  T. Teyler,et al.  NMDA receptor‐independent LTP in basal versus apical dendrites of CA1 pyramidal cells in rat hippocampal slice , 1998, Hippocampus.

[97]  D L Rosene,et al.  Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: Projections from CA1, prosubiculum, and subiculum to the temporal lobe , 1998, The Journal of comparative neurology.

[98]  M. Frotscher,et al.  The Hippocampus of the Reeler Mutant Mouse: Fiber Segregation in Area CA1 Depends on the Position of the Postsynaptic Target Cells , 1999, Experimental Neurology.

[99]  E. Soriano,et al.  Development of Commissural Connections in the Hippocampus of Reeler Mice: Evidence of an Inhibitory Influence of Cajal–Retzius Cells , 1999, Experimental Neurology.

[100]  P. Hof,et al.  Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns , 1999, Journal of Chemical Neuroanatomy.

[101]  M. Yukie,et al.  Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the japanese monkey (Macaca fuscata) , 2000, The Journal of comparative neurology.

[102]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[103]  C. Cavada,et al.  The anatomical connections of the macaque monkey orbitofrontal cortex. A review. , 2000, Cerebral cortex.

[104]  A. Fayyazuddin,et al.  Molecular Organization of a Zinc Binding N-Terminal Modulatory Domain in a NMDA Receptor Subunit , 2000, Neuron.

[105]  Peter L Carlen,et al.  Gap junctions, synchrony and seizures , 2000, Trends in Neurosciences.

[106]  J. Kouril,et al.  SHORT COMMUNICATION , 2004, Aquaculture International.

[107]  Veeranna,et al.  Synergistic contributions of cyclin-dependant kinase 5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[108]  R. Traub,et al.  Axo-Axonal Coupling A Novel Mechanism for Ultrafast Neuronal Communication , 2001, Neuron.

[109]  R. Insausti,et al.  Cortical projections of the non‐entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis) , 2001, The European journal of neuroscience.

[110]  M. Frotscher,et al.  Stereological estimates of total neuron numbers in the hippocampus of adult reeler mutant mice: Evidence for an increased survival of Cajal‐Retzius cells , 2001, The Journal of comparative neurology.

[111]  Hans-Christian Pedersen,et al.  Characterization of Two Novel Nuclear BTB/POZ Domain Zinc Finger Isoforms , 2002, Journal of Biological Chemistry.

[112]  C. Walsh,et al.  Doublecortin Is Required in Mice for Lamination of the Hippocampus But Not the Neocortex , 2002, The Journal of Neuroscience.

[113]  B. Zörner,et al.  Memory retrieval after contextual fear conditioning induces c‐Fos and JunB expression in CA1 hippocampus , 2003, Genes, brain, and behavior.

[114]  Yusuke Nakamura,et al.  Fukutin is required for maintenance of muscle integrity, cortical histiogenesis and normal eye development. , 2003, Human molecular genetics.

[115]  Maria Blatow,et al.  Ca2+ Buffer Saturation Underlies Paired Pulse Facilitation in Calbindin-D28k-Containing Terminals , 2003, Neuron.

[116]  R. Vannucci,et al.  Neuropathology of seizures in the immature rabbit. , 2004, Brain research. Developmental brain research.

[117]  W. Cowan,et al.  The time of origin of neurons in Ammon's horn and the associated retrohippocampal fields , 1978, Anatomy and Embryology.

[118]  L. Slomianka,et al.  Zinc-positive afferents to the rat septum originate from distinct subpopulations of zinc-containing neurons in the hippocampal areas and layers , 1993, Anatomy and Embryology.

[119]  L. Slomianka,et al.  Zinc-containing telencephalic connections to the rat striatum: a combined Fluoro-Gold tracing and histochemical study , 1990, Experimental Brain Research.

[120]  Phiroz E. Tarapore,et al.  Overexpression of calbindin D28k in dentate gyrus granule cells alters mossy fiber presynaptic function and impairs hippocampal‐dependent memory , 2004, Hippocampus.

[121]  H. Braak,et al.  On the structure of the human archicortex , 1974, Cell and Tissue Research.

[122]  C. Léránth,et al.  Calcium-binding proteins are concentrated in the CA2 field of the monkey hippocampus: a possible key to this region's resistance to epileptic damage , 2004, Experimental Brain Research.

[123]  Lawrence J Hirsch,et al.  “Tectonic” hippocampal malformations in patients with temporal lobe epilepsy , 2004, Epilepsy Research.

[124]  A. Bush,et al.  The neurobiology of zinc in health and disease , 2005, Nature Reviews Neuroscience.

[125]  P. Paoletti,et al.  The Micromolar Zinc-Binding Domain on the NMDA Receptor Subunit NR2B , 2005, The Journal of Neuroscience.

[126]  E. Callaway,et al.  Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3‐dimensional reconstruction , 2005, The Journal of comparative neurology.

[127]  K. Rockland,et al.  Zinc-enriched amygdalo- and hippocampo-cortical connections to the inferotemporal cortices in macaque monkey , 2005, Neuroscience Research.

[128]  D. Amaral,et al.  Morphological characteristics and electrophysiological properties of CA1 pyramidal neurons in macaque monkeys , 2005, Neuroscience.

[129]  Yiwen Ruan,et al.  In vivo demonstration of a late depolarizing postsynaptic potential in CA1 pyramidal neurons. , 2005, Journal of neurophysiology.

[130]  K. Mikoshiba,et al.  Impairment of hippocampal long‐term depression and defective spatial learning and memory in p35–/– mice , 2005, Journal of neurochemistry.

[131]  C. Walsh,et al.  Genetic Interactions between Doublecortin and Doublecortin-like Kinase in Neuronal Migration and Axon Outgrowth , 2006, Neuron.

[132]  Alex M Thomson,et al.  Electrical coupling between pyramidal cells in adult cortical regions , 2007, Brain cell biology.

[133]  M. Bennett,et al.  Pyramid power: Principal cells of the hippocampus unite! , 2007, Brain cell biology.

[134]  C. Fallet-Bianco,et al.  Magnetic resonance imaging and histological studies of corpus callosal and hippocampal abnormalities linked to doublecortin deficiency , 2007, The Journal of comparative neurology.

[135]  Steve D. M. Brown,et al.  Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans , 2007, Cell.

[136]  S J Blackband,et al.  Diffusion tensor microscopy indicates the cytoarchitectural basis for diffusion anisotropy in the human hippocampus. , 2007, AJNR. American journal of neuroradiology.

[137]  Morphological heterogeneity of CA1 pyramidal neurons in response to ischemia , 2007, Journal of neuroscience research.

[138]  John C. Rothwell,et al.  Theta Burst Stimulation , 2007 .

[139]  Trevor W Robbins,et al.  Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): An anterograde and retrograde tract‐tracing study , 2007, The Journal of comparative neurology.

[140]  J. Noraberg,et al.  Hippocampus-like corticoneurogenesis induced by two isoforms of the BTB-zinc finger gene Zbtb20 in mice , 2007, Development.

[141]  O. Britanova,et al.  Satb2 Is a Postmitotic Determinant for Upper-Layer Neuron Specification in the Neocortex , 2008, Neuron.

[142]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[143]  Allan R. Jones,et al.  Genomic Anatomy of the Hippocampus , 2008, Neuron.

[144]  S. Baraban,et al.  Aberrant dentate gyrus cytoarchitecture and fiber lamination in LIS1 mutant mice , 2008, Hippocampus.

[145]  J. O’Neill,et al.  Gamma Oscillatory Firing Reveals Distinct Populations of Pyramidal Cells in the CA1 Region of the Hippocampus , 2008, The Journal of Neuroscience.

[146]  S. Mcconnell,et al.  The determination of projection neuron identity in the developing cerebral cortex , 2008, Current Opinion in Neurobiology.

[147]  Riichi Kajiwara,et al.  Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1—An anatomical study in the rat , 2008, Hippocampus.

[148]  C. Alvarez,et al.  Epilepsy in Dcx Knockout Mice Associated with Discrete Lamination Defects and Enhanced Excitability in the Hippocampus , 2008, PloS one.

[149]  P. Arlotta,et al.  SOX5 Controls the Sequential Generation of Distinct Corticofugal Neuron Subtypes , 2008, Neuron.

[150]  Y. Murakumo,et al.  Roles of Disrupted-In-Schizophrenia 1-Interacting Protein Girdin in Postnatal Development of the Dentate Gyrus , 2009, Neuron.

[151]  B. Barbour,et al.  Zinc at glutamatergic synapses , 2009, Neuroscience.

[152]  N. Tronson,et al.  Segregated Populations of Hippocampal Principal CA1 Neurons Mediating Conditioning and Extinction of Contextual Fear , 2009, The Journal of Neuroscience.

[153]  Arthur W. Toga,et al.  Genomic–anatomic evidence for distinct functional domains in hippocampal field CA1 , 2009, Proceedings of the National Academy of Sciences.

[154]  Hong-wei Dong,et al.  Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? , 2010, Neuron.

[155]  R. Liem,et al.  Nervous-tissue-specific elimination of microtubule-actin crosslinking factor 1a results in multiple developmental defects in the mouse brain , 2010, Molecular and Cellular Neuroscience.

[156]  A. Wynshaw-Boris,et al.  Novel Embryonic Neuronal Migration and Proliferation Defects in Dcx Mutant Mice Are Exacerbated by Lis1 Reduction , 2010, The Journal of Neuroscience.

[157]  Yu-Qiang Ding,et al.  Zbtb20 is essential for the specification of CA1 field identity in the developing hippocampus , 2010, Proceedings of the National Academy of Sciences.

[158]  J. Noraberg,et al.  Zbtb20-induced CA1 pyramidal neuron development and area enlargement in the cerebral midline cortex of mice. , 2010, Cerebral cortex.

[159]  C. Pavlides,et al.  Hippocampal cells encode places by forming small anatomical clusters , 2010, Neuroscience.

[160]  E. Cavalheiro,et al.  Morphological and electrophysiological properties of pyramidal-like neurons in the stratum oriens of Cornu ammonis 1 and Cornu ammonis 2 area of Proechimys , 2011, Neuroscience.

[161]  J. Bekkers,et al.  Pyramidal neurons , 2011, Current Biology.

[162]  Y. Qi,et al.  Conditional knockout of protein O‐mannosyltransferase 2 reveals tissue‐specific roles of O‐mannosyl glycosylation in brain development , 2011, The Journal of comparative neurology.

[163]  P. Caroni,et al.  Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus , 2011, Nature Neuroscience.