Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia.

BACKGROUND We initiated a phase 1 clinical study to determine the safety and bioactivity of direct myocardial gene transfer of vascular endothelial growth factor (VEGF) as sole therapy for patients with symptomatic myocardial ischemia. METHODS AND RESULTS VEGF gene transfer (GTx) was performed in 5 patients (all male, ages 53 to 71) who had failed conventional therapy; these men had angina (determined by angiographically documented coronary artery disease). Naked plasmid DNA encoding VEGF (phVEGF165) was injected directly into the ischemic myocardium via a mini left anterior thoracotomy. Injections caused no changes in heart rate (pre-GTx=75+/-15/min versus post-GTx=80+/-16/min, P=NS), systolic BP (114+/-7 versus 118+/-7 mm Hg, P=NS), or diastolic BP (57+/-2 versus 59+/-2 mm Hg, P=NS). Ventricular arrhythmias were limited to single unifocal premature beats at the moment of injection. Serial ECGs showed no evidence of new myocardial infarction in any patient. Intraoperative blood loss was 0 to 50 cm3, and total chest tube drainage was 110 to 395 cm3. Postoperative cardiac output fell transiently but increased within 24 hours (preanesthesia=4.8+/-0.4 versus postanesthesia=4.1+/-0.3 versus 24 hours postoperative=6. 3+/-0.8, P=0.02). Time to extubation after closure was 18.4+/-1.4 minutes; average postoperative hospital stay was 3.8 days. All patients had significant reduction in angina (nitroglycerin [NTG] use=53.9+/-10.0/wk pre-GTx versus 9.8+/-6.9/wk post-GTx, P<0.03). Postoperative left ventricular ejection fraction (LVEF) was either unchanged (n=3) or improved (n=2, mean increase in LVEF=5%). Objective evidence of reduced ischemia was documented using dobutamine single photon emission computed tomography (SPECT)-sestamibi imaging in all patients. Coronary angiography showed improved Rentrop score in 5 of 5 patients. CONCLUSIONS This initial experience with naked gene transfer as sole therapy for myocardial ischemia suggests that direct myocardial injection of naked plasmid DNA, via a minimally invasive chest wall incision, is safe and may lead to reduced symptoms and improved myocardial perfusion in selected patients with chronic myocardial ischemia.

[1]  J. Isner,et al.  Gene therapy for myocardial angiogenesis. , 1999, American heart journal.

[2]  K Walsh,et al.  Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. , 1998, Circulation.

[3]  B. V. von Specht,et al.  Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. , 1998, Circulation.

[4]  J. Isner,et al.  Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. , 1996, Laboratory investigation; a journal of technical methods and pathology.

[5]  Takayuki Asahara,et al.  Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb , 1996, The Lancet.

[6]  F. Sellke,et al.  Angiogenesis induced by acidic fibroblast growth factor as an alternative method of revascularization for chronic myocardial ischemia. , 1996, Surgery.

[7]  Peipei Ping,et al.  Intracoronary gene transfer of fibroblast growth factor–5 increases blood flow and contractile function in an ischemic region of the heart , 1996, Nature Medicine.

[8]  J. Pearlman,et al.  Magnetic resonance mapping demonstrates benefits of VEGF–induced myocardial angiogenesis , 1995, Nature Medicine.

[9]  J. Isner,et al.  Time course of recombinant protein secretion after liposome-mediated gene transfer in a rabbit arterial organ culture model. , 1994, Laboratory investigation; a journal of technical methods and pathology.

[10]  W Grossman,et al.  Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. , 1994, The Journal of clinical investigation.

[11]  S. Epstein,et al.  Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. , 1994, Circulation.

[12]  J. Isner,et al.  Use of the Rabbit Ear Artery to Serially Assess Foreign Protein Secretion After Site‐Specific Arterial Gene Transfer In Vivo: Evidence That Anatomic Identification of Successful Gene Transfer May Underestimate the Potential Magnitude of Transgene Expression , 1994, Circulation.

[13]  E. Brogi,et al.  Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. , 1994, The Journal of clinical investigation.

[14]  J. Fiddes,et al.  The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. , 1991, The Journal of biological chemistry.

[15]  D. Goeddel,et al.  Vascular endothelial growth factor is a secreted angiogenic mitogen. , 1989, Science.

[16]  M. Cohen,et al.  Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. , 1985, Journal of the American College of Cardiology.

[17]  R. Crystal,et al.  Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. , 1998, The Journal of thoracic and cardiovascular surgery.

[18]  R. Hendel,et al.  Results of intracoronary recombinant human vascular endothelial growth factor (rhVEGF) administration trial , 1998 .

[19]  J. Isner,et al.  Constitutive Expression of phVEGF 165 After Intramuscular Gene Transfer Promotes Collateral Vessel Development in Patients With Critical Limb Ischemia Clinical Investigation and Reports , 1998 .

[20]  J. Folkman,et al.  Angiogenic factors. , 1987, Science.