SIMPLIFIED DYNAMIC ANALYSIS OF SLOSHING PHENOMENON IN TANKS WITH MULTIPLE BAFFLES SUBJECTED TO EARTHQUAKE

Sloshing is a well-known phenomenon in liquid storage tanks subjected to base or body motions. In recent years the use of baffles for reducing the sloshing effects in tanks subjected to earthquake has been studied by some researchers. However, the use of multiple baffles has not been taken into consideration so much. On the other hand, although some of the existing computer programs are capable to model sloshing phenomenon by acceptable accuracy, the full dynamic analysis subjected to random excitations such as earthquake induced motions is very time consuming, particularly when there are vertical and horizontal baffles inside the tank, which postpone the convergence of response calculations. Therefore, a simplified method for evaluation of sloshing effects in baffled tanks is desired. In this paper a method is presented for this purpose based on conducting several dynamic analysis cases, by using a powerful Finite Element (FE) method for rectangular tanks with various dimensions, subjected to both harmonic and seismic excitations, and then using neural network to create simple relationships between the dominant frequency and amplitude of the base excitations and the maximum level of liquid in the tank during the sloshing and also the maximum dynamic pressure on the tank wall. At first, the FE numerical modeling has been verified by using some existing experimental data. Then, dynamic analyses have been conducted to obtain the required numerical results for teaching the neural network. In the next stage, the neural network model has been developed. Finally, the predicted results of the neural network have been compared with those obtained by some other cases of analyses as control values, to make sure on the accuracy of the neural network model. The proposed simplified neural network model can be used also for finding the proper number and features of baffles for minimizing the sloshing effect on the tank for a group of given earthquakes, or other cases of base excitations. Mahmood Hosseini and Pegah Farshadmanesh