Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse

Compared with T-ALL diagnosis samples, samples obtained at relapse or after xenograft into immunodeficient mice exhibit additional genomic lesions in oncogenes and/or tumor suppressor genes; these lesions contribute to leukemia-initiating activity.

[1]  Leslie L Robison,et al.  Acute lymphoblastic leukaemia , 2018, Radiopaedia.org.

[2]  S. Hunger,et al.  Postrelapse survival in childhood acute lymphoblastic leukemia is independent of initial treatment intensity: a report from the Children's Oncology Group. , 2011, Blood.

[3]  K. Anderson,et al.  Genetic variegation of clonal architecture and propagating cells in leukaemia , 2011, Nature.

[4]  I. Bernstein,et al.  Optimized gene transfer into human primary leukemic T cell with NOD-SCID/leukemia-initiating cell activity , 2010, Leukemia.

[5]  F. Staal,et al.  Genome-wide expression analysis of paired diagnosis–relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype , 2010, Leukemia.

[6]  A. Ferrando,et al.  Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia , 2009, Nature Genetics.

[7]  S. Morrison,et al.  Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution , 2009, Cell.

[8]  A. Ferrando,et al.  WT1 mutations in T-ALL. , 2009, Blood.

[9]  L. Chin,et al.  High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. , 2009, Blood.

[10]  H. Dombret,et al.  NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. , 2009, Blood.

[11]  J. Dick,et al.  Stem cell concepts renew cancer research. , 2008, Blood.

[12]  James R. Downing,et al.  Genomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic Leukemia , 2008, Science.

[13]  M. Relling,et al.  Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. , 2008, Blood.

[14]  R. Pieters,et al.  Molecular‐genetic insights in paediatric T‐cell acute lymphoblastic leukaemia , 2008, British journal of haematology.

[15]  B. Lange,et al.  Bone-marrow relapse in paediatric acute lymphoblastic leukaemia. , 2008, The Lancet. Oncology.

[16]  E. Raetz,et al.  Molecular pathogenesis of T-cell leukaemia and lymphoma , 2008, Nature Reviews Immunology.

[17]  Govind Bhagat,et al.  Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia , 2007, Nature Medicine.

[18]  B. Nadel,et al.  The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. , 2007, Blood.

[19]  U. Kees,et al.  Relapse in children with acute lymphoblastic leukemia involving selection of a preexisting drug-resistant subclone. , 2007, Blood.

[20]  Adam A. Margolin,et al.  NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth , 2006, Proceedings of the National Academy of Sciences.

[21]  R. Spang,et al.  Expression of Late Cell Cycle Genes and an Increased Proliferative Capacity Characterize Very Early Relapse of Childhood Acute Lymphoblastic Leukemia , 2006, Clinical Cancer Research.

[22]  George Davidson,et al.  Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study. , 2006, Blood.

[23]  S. Morrison,et al.  Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells , 2006, Nature.

[24]  F. Sigaux,et al.  HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). , 2005, Blood.

[25]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[26]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[27]  M. Greaves,et al.  TEL Deletion Analysis Supports a Novel View of Relapse in Childhood Acute Lymphoblastic Leukemia , 2004, Clinical Cancer Research.

[28]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[29]  R. Pieters,et al.  In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. , 1995, Blood.

[30]  Irving L. Weissman,et al.  Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271 , 2011, Nature.

[31]  A. Ferrando,et al.  WT 1 mutations in TALL , 2009 .

[32]  Iannis Aifantis,et al.  γ-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia , 2009, Nature Medicine.

[33]  P. Marynen,et al.  Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. , 2005, Haematologica.