SMOCs: supramolecular organizing centres that control innate immunity

[1]  Hao Wu,et al.  IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly. , 2014, Molecular cell.

[2]  P. Penczek,et al.  Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. , 2014, Molecular cell.

[3]  J. Yagüe,et al.  The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response , 2014, Nature Immunology.

[4]  P. Cossart,et al.  Diverse intracellular pathogens activate Type III Interferon expression from peroxisomes , 2014, Nature Immunology.

[5]  S. Hornemann,et al.  ASC has extracellular and prionoid activities that propagate inflammation , 2014, Nature Immunology.

[6]  Hao Wu,et al.  Crystal structure of the F27G AIM2 PYD mutant and similarities of its self-association to DED/DED interactions. , 2014, Journal of molecular biology.

[7]  Katherine A. Fitzgerald,et al.  Unified Polymerization Mechanism for the Assembly of ASC-Dependent Inflammasomes , 2014, Cell.

[8]  Zhijian J. Chen,et al.  Prion-like Polymerization Underlies Signal Transduction in Antiviral Immune Defense and Inflammasome Activation , 2014, Cell.

[9]  Zhijian J. Chen,et al.  Structural basis for the prion-like MAVS filaments in antiviral innate immunity , 2014, eLife.

[10]  A. Iwasaki,et al.  A Promiscuous Lipid-Binding Protein Diversifies the Subcellular Sites of Toll-like Receptor Signal Transduction , 2014, Cell.

[11]  Hao Wu,et al.  Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. , 2013, Molecular cell.

[12]  T. Walz,et al.  RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. , 2013, Molecular cell.

[13]  Nan Yan,et al.  Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses , 2013, Science.

[14]  F. Sutterwala,et al.  Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. , 2013, Immunity.

[15]  F. Martinon,et al.  Crystal Structure of NLRC4 Reveals Its Autoinhibition Mechanism , 2013, Science.

[16]  Hao Wu,et al.  Higher-Order Assemblies in a New Paradigm of Signal Transduction , 2013, Cell.

[17]  R. Germain,et al.  The Adaptor MAVS Promotes NLRP3 Mitochondrial Localization and Inflammasome Activation , 2013, Cell.

[18]  S. Akira,et al.  Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome , 2013, Nature Immunology.

[19]  Kenta Moriwaki,et al.  The RIP1/RIP3 Necrosome Forms a Functional Amyloid Signaling Complex Required for Programmed Necrosis , 2012, Cell.

[20]  N. Grishin,et al.  Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. , 2012, Immunity.

[21]  Wei Jia,et al.  Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-κB. , 2012, Immunity.

[22]  R. Ferrao,et al.  Helical assembly in the death domain (DD) superfamily. , 2012, Current opinion in structural biology.

[23]  Zhijian J. Chen,et al.  Role of the Clathrin Terminal Domain in Regulating Coated Pit Dynamics Revealed by Small Molecule Inhibition , 2011, Cell.

[24]  M. Gale,et al.  Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus , 2011, Proceedings of the National Academy of Sciences.

[25]  Yusuke Yanagi,et al.  Mitochondrial Membrane Potential Is Required for MAVS-Mediated Antiviral Signaling , 2011, Science Signaling.

[26]  S. Akira,et al.  Pathogen Recognition by the Innate Immune System , 2011, International reviews of immunology.

[27]  Liwei Wang,et al.  The Fas–FADD death domain complex structure reveals the basis of DISC assembly and disease mutations , 2010, Nature Structural &Molecular Biology.

[28]  Timothy K Lee,et al.  Single-cell NF-κB dynamics reveal digital activation and analogue information processing , 2010, Nature.

[29]  E. Alnemri,et al.  Involvement of the AIM2, NLRC4, and NLRP3 Inflammasomes in Caspase-1 Activation by Listeria monocytogenes , 2010, Journal of Clinical Immunology.

[30]  N. Hacohen,et al.  Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity , 2010, Cell.

[31]  Y. Lo,et al.  Helical assembly in the MyD88:IRAK4:IRAK2 complex in TLR/IL-1R signaling , 2010, Nature.

[32]  Zhijian J. Chen,et al.  Reconstitution of the RIG-I Pathway Reveals a Signaling Role of Unanchored Polyubiquitin Chains in Innate Immunity , 2010, Cell.

[33]  C. Robinson,et al.  An Oligomeric Signaling Platform Formed by the Toll-like Receptor Signal Transducers MyD88 and IRAK-4* , 2009, The Journal of Biological Chemistry.

[34]  Greg L. Hura,et al.  E2 interaction and dimerization in the crystal structure of TRAF6 , 2009, Nature Structural &Molecular Biology.

[35]  Daniel R. Caffrey,et al.  AIM2 recognizes cytosolic dsDNA and forms a caspase-1 activating inflammasome with ASC , 2009, Nature.

[36]  S. Akira,et al.  Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production , 2008, Nature.

[37]  G. Barber,et al.  STING an Endoplasmic Reticulum Adaptor that Facilitates Innate Immune Signaling , 2008, Nature.

[38]  B. Monks,et al.  Ligand-induced conformational changes allosterically activate Toll-like receptor 9 , 2007, Nature Immunology.

[39]  J. Weiss,et al.  Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells , 2007, Immunologic research.

[40]  R. Medzhitov,et al.  Phosphoinositide-Mediated Adaptor Recruitment Controls Toll-like Receptor Signaling , 2006, Cell.

[41]  Zhijian J. Chen,et al.  Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3 , 2005, Cell.

[42]  M. Sarker,et al.  SPOTS: signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane. , 2004, The Journal of cell biology.

[43]  T. Fujita,et al.  TIR-containing Adapter Molecule (TICAM)-2, a Bridging Adapter Recruiting to Toll-like Receptor 4 TICAM-1 That Induces Interferon-β* , 2003, Journal of Biological Chemistry.

[44]  B. Monks,et al.  Lysines 128 and 132 Enable Lipopolysaccharide Binding to MD-2, Leading to Toll-like Receptor-4 Aggregation and Signal Transduction* , 2003, Journal of Biological Chemistry.

[45]  S. Akira,et al.  TRAM is specifically involved in the Toll-like receptor 4–mediated MyD88-independent signaling pathway , 2003, Nature Immunology.

[46]  S. Akira,et al.  Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway , 2003, Science.

[47]  T. Akazawa,et al.  TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–mediated interferon-β induction , 2003, Nature Immunology.

[48]  R. Flavell,et al.  The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors , 2002, Nature.

[49]  Alicia Algeciras-Schimnich,et al.  Molecular Ordering of the Initial Signaling Events of CD95 , 2002, Molecular and Cellular Biology.

[50]  Dirk E. Smith,et al.  Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction , 2001, Nature.

[51]  R. Medzhitov,et al.  TIRAP: an adapter molecule in the Toll signaling pathway , 2001, Nature Immunology.

[52]  P. Ricciardi-Castagnoli,et al.  Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. , 1998, Science.

[53]  C. Janeway,et al.  MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. , 1998, Molecular cell.

[54]  C. Janeway,et al.  A human homologue of the Drosophila Toll protein signals activation of adaptive immunity , 1997, Nature.

[55]  Zhijian J. Chen,et al.  Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. , 2005, Cell.

[56]  Hao Wu,et al.  Serveur Académique Lausannois SERVAL serval.unil.ch , 2022 .