Effect of specific growth rate and glucose concentration on growth and glucose metabolism of Escherichia coli K-12.

Chemostat cultures of E. coli K-12 revealed that the metabolic change from respiration to aerobic fermentation can be obtained with increasing specific growth rate at low glucose input concentration (0.1%), or increasing glucose input concentrations at low specific growth rate (0.1 h-1). Both effects do not affect biomass formation. The metabolic change is not related to a pathway switch of glucose utilization. The increase in specific growth rate causes suppression of succinate dehydrogenase, and NADH oxidase, whereas glucose increases cause suppression of succinate dehydrogenase, cytochrome a and 2-ketoglutarate dehydrogenase. Both phenomena are reflected in the specific oxygen uptake rate, specific carbon dioxide production rate and respiratory quotient values. Growth limitation could be related to a maximal glucose uptake rate of the cell and thus constitutes an entirely different effect caused by high glucose input concentration.