Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF), multiple effect distillation (MED), multistage vacuum membrane distillation (MSVMD), humidification-dehumidification (HDH), and organic Rankine cycles (ORCs) paired with mechanical technologies of reverse osmosis (RO) and mechanical vapor compression (MVC). The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions) had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

[1]  John H. Lienhard,et al.  Multistage vacuum membrane distillation (MSVMD) systems for high salinity applications , 2016 .

[2]  Hisham Ettouney,et al.  Evaluating the economics of desalination , 2002 .

[3]  Karan H. Mistry,et al.  An Economics-Based Second Law Efficiency , 2013, Entropy.

[4]  Alfred Leipertz,et al.  Economical aspects of the improvement of a mechanical vapour compression desalination plant by dropwise condensation , 2010 .

[5]  Karan H. Mistry,et al.  Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes , 2013, Entropy.

[6]  Ronan K. McGovern,et al.  Entropy Generation Analysis of Desalination Technologies , 2011, Entropy.

[7]  Karan H. Mistry,et al.  Optimal operating conditions and configurations for humidification–dehumidification desalination cycles , 2011 .

[8]  Guohong Tian,et al.  Organic Rankine Cycle recovering stage heat from MSF desalination distillate water , 2014 .

[9]  E. Glueckauf,et al.  Principles of Desalination , 1966 .

[10]  John H. Lienhard,et al.  An improved model for multiple effect distillation , 2012 .

[11]  James E. Miller,et al.  Review of Water Resources and Desalination Technologies , 2003 .

[12]  Guo Tao,et al.  Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation , 2011 .

[13]  Hassan E.S. Fath,et al.  Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE–MVC) desalination process , 2008 .

[14]  William T. Choate,et al.  Waste Heat Recovery. Technology and Opportunities in U.S. Industry , 2008 .

[15]  M. Darwish,et al.  Multi-effect boiling systems from an energy viewpoint , 2006 .

[16]  John H. Lienhard,et al.  Entropy generation in condensation in the presence of high concentrations of noncondensable gases , 2012 .

[17]  Mark T. Holtzapple,et al.  An investigation of high operating temperatures in mechanical vapor-compression desalination. , 2008 .

[18]  J. Lienhard,et al.  Erratum to Thermophysical properties of seawater: A review of existing correlations and data , 2010 .

[19]  S. E. Aly Gas turbine total energy vapour compression desalination system , 1999 .

[20]  Kamel Hooman,et al.  Low grade heat driven multi-effect distillation technology , 2011 .

[21]  Seung Jin Oh,et al.  Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles , 2015 .

[22]  John H. Lienhard,et al.  Use of multiple extractions and injections to thermodynamically balance the humidification dehumidification desalination system , 2013 .

[23]  John H. Lienhard,et al.  Superhydrophobic condenser surfaces for air gap membrane distillation , 2015 .

[24]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[25]  H. Ettouney,et al.  Fundamentals of Salt Water Desalination , 2002 .

[26]  John H. Lienhard,et al.  EFFECT OF MODULE INCLINATION ANGLE ON AIR GAP MEMBRANE DISTILLATION , 2014 .

[27]  Julian Ashbourn,et al.  A Technology Overview , 2014 .

[28]  John H. Lienhard,et al.  Scaling and fouling in membrane distillation for desalination applications: A review , 2015 .

[29]  Noreddine Ghaffour,et al.  Renewable energy-driven innovative energy-efficient desalination technologies , 2014 .

[30]  F. N. Alasfour,et al.  Thermal analysis of ME—TVC+MEE desalination systems , 2005 .

[31]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[32]  Farid Chejne,et al.  A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation , 2012 .

[33]  John H. Lienhard,et al.  Effect of entropy generation on the performance of humidification-dehumidification desalination cycles , 2010 .

[34]  Karim M. Chehayeb,et al.  A Numerical Solution Algorithm for a Heat and Mass Transfer Model of a Desalination System Based on Packed-Bed Humidification and Bubble Column Dehumidification , 2014 .

[35]  S. K. Wang,et al.  A Review of Organic Rankine Cycles (ORCs) for the Recovery of Low-grade Waste Heat , 1997 .

[36]  JoséM. Veza,et al.  Mechanical vapour compression desalination plants : a case study , 1995 .

[37]  Shaobo Hou,et al.  Two-stage solar multi-effect humidification dehumidification desalination process plotted from pinch analysis , 2008 .

[38]  John H. Lienhard,et al.  Thermodynamic balancing of a fixed-size two-stage humidification dehumidification desalination system , 2015 .

[39]  Elias K. Stefanakos,et al.  Reverse osmosis desalination driven by low temperature supercritical organic rankine cycle , 2013 .

[40]  John H. Lienhard,et al.  Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations , 2012 .

[41]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[42]  John H. Lienhard,et al.  Thermodynamic analysis of humidification dehumidification desalination cycles , 2009 .

[43]  George Papadakis,et al.  Low­grade heat conversion into power using organic Rankine cycles - A review of various applications , 2011 .

[44]  K. S. Spiegler,et al.  Principles of desalination , 1966 .

[45]  Sebastian Büttner,et al.  Experimental study of the memsys vacuum-multi-effect-membrane-distillation (V-MEMD) module , 2013 .

[46]  J. L. Amprako The United Nations World Water Development Report 2015: Water for a Sustainable World , 2016 .