Improved global context descriptor for describing interest regions

The global context (GC) descriptor is improved for describing interest regions, uses gradient orientation for binning, and thus provides more robust invariance for geometric and photometric transformations. The performance of the improved GC (IGC) to image matching is studied through extensive experiments on the Oxford Affine dataset. Empirical results indicate that the proposed IGC yields quite stable and robust results, significantly outperforms the original GC, and also can outperform the classical scale-invariant feature transform (SIFT) in most of the test cases. By integrating the IGC to the SIFT, the resulting of hybrid SIFT+IGC performs best over all other single descriptors in these experimental evaluations with various geometric transformations.

[1]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[2]  Rainer Lienhart,et al.  Comparing Local Feature Descriptors in pLSA-Based Image Models , 2008, DAGM-Symposium.

[3]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[4]  Haibin Ling,et al.  Deformation invariant image matching , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[5]  Bei Cao,et al.  Affine-invariant SIFT descriptor with global context , 2010, 2010 3rd International Congress on Image and Signal Processing.

[6]  Jean-Michel Morel,et al.  A fully affine invariant image comparison method , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Lizhuang Ma,et al.  A new framework for feature descriptor based on SIFT , 2009, Pattern Recognit. Lett..

[8]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[9]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[10]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[12]  Prosenjit Bose,et al.  Global Context Descriptors for SURF and MSER Feature Descriptors , 2010, 2010 Canadian Conference on Computer and Robot Vision.

[13]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[15]  James J. Little,et al.  Global localization using distinctive visual features , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Carsten Steger,et al.  An Unbiased Detector of Curvilinear Structures , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Pietro Perona,et al.  Evaluation of Features Detectors and Descriptors Based on 3D Objects , 2005, ICCV.

[18]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[19]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[20]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[21]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[22]  Linda G. Shapiro,et al.  A SIFT descriptor with global context , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  Jing Li,et al.  A comprehensive review of current local features for computer vision , 2008, Neurocomputing.

[24]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.