The Main Central Thrust zone along the Alaknanda and Dhauli Ganga valleys (Garhwal Himalaya, NW India): Insights into an inverted metamorphic sequence

[1]  R. Carosi,et al.  Transpressive Deformation in the Southern European Variscan Belt: New Insights From the Aiguilles Rouges Massif (Western Alps) , 2020, Tectonics.

[2]  S. Iaccarino,et al.  Three‐dimensional vorticity and time‐constrained evolution of the Main Central Thrust zone, Garhwal Himalaya (NW India) , 2020, Terra Nova.

[3]  P. Mukherjee,et al.  U-Pb zircon ages and Sm-Nd isotopic characteristics of the Lesser and Great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications , 2019, Gondwana Research.

[4]  Y. Podladchikov,et al.  Spontaneous generation of ductile shear zones by thermal softening: Localization criterion, 1D to 3D modelling and application to the lithosphere , 2019, Earth and Planetary Science Letters.

[5]  I. Villa,et al.  Petrochronology and hygrochronology of tectono-metamorphic events , 2019, Gondwana Research.

[6]  D. Waters Metamorphic constraints on the tectonic evolution of the High Himalaya in Nepal: the art of the possible , 2019, Special Publications.

[7]  J. Platt Comment on “Channel flow, tectonic overpressure, and exhumation of high-pressure rocks in the Greater Himalayas” by Marques et al. (2018) , 2019, Solid Earth.

[8]  S. Misra,et al.  Quartz deformation across interlayered monomineralic and polymineralic rocks: A comparative analysis , 2019, Journal of Structural Geology.

[9]  S. S. Thakur,et al.  Yttrium-zoning in garnet and stability of allanite in metapelites from the Main Central Thrust Zone and adjacent higher Himalayan crystallines along the Alaknanda Valley, NW Himalaya , 2018, Lithos.

[10]  M. Caddick,et al.  Quantifying magnitudes of shear heating in metamorphic systems , 2018, Tectonophysics.

[11]  S. Misra,et al.  Microscopic anatomy of a “hot-on-cold” shear zone: Insights from quartzites of the Main Central Thrust in the Alaknanda region (Garhwal Himalaya) , 2018 .

[12]  A. Langone,et al.  Kinematic and geochronological constraints on shear deformation in the Ferriere-Mollières shear zone (Argentera-Mercantour Massif, Western Alps): implications for the evolution of the Southern European Variscan Belt , 2018, International Journal of Earth Sciences.

[13]  S. Iaccarino,et al.  Structural evolution, metamorphism and melting in the Greater Himalayan Sequence in central-western Nepal , 2018, Special Publications.

[14]  M. Searle,et al.  Structural and thermal evolution of the South Tibetan Detachment shear zone in the Mt Everest region, from the 1933 sample collection of L. R. Wager , 2018, Special Publications.

[15]  R. Weinberg,et al.  A new technique for quantifying symmetry and opening angles in quartz c-axis pole figures: Implications for interpreting the kinematic and thermal properties of rocks , 2018, Journal of Structural Geology.

[16]  S. Iaccarino,et al.  Age constraints on the deformation style of the South Tibetan Detachment System in Garhwal Himalaya , 2018, Italian Journal of Geosciences.

[17]  H. Massonne,et al.  Dating protracted fault activities: microstructures, microchemistry and geochronology of the Vaikrita Thrust, Main Central Thrust zone, Garhwal Himalaya, NW India , 2018, Special Publications.

[18]  S. Iaccarino,et al.  20 years of geological mapping of the metamorphic core across Central and Eastern Himalayas , 2018 .

[19]  A. Langone,et al.  Pressure‐Temperature‐Deformation‐Time Constraints on the South Tibetan Detachment System in the Garhwal Himalaya (NW India) , 2017 .

[20]  H. Massonne,et al.  Monazite in a Variscan mylonitic paragneiss from the Münchberg Metamorphic Complex (NE Bavaria) records Cadomian protolith ages , 2017 .

[21]  P. Yamato,et al.  On the meaning of peak temperature profiles in inverted metamorphic sequences , 2017 .

[22]  H. Massonne,et al.  Geology and tectono‐metamorphic evolution of the Himalayan metamorphic core: insights from the Mugu Karnali transect, Western Nepal (Central Himalaya) , 2017 .

[23]  I. Dunkl,et al.  Tectono-metamorphic evolution of the Tethyan Sedimentary Sequence (Himalayas, SE Tibet) , 2017 .

[24]  Aaron J. Martin A review of definitions of the Himalayan Main Central Thrust , 2017, International Journal of Earth Sciences.

[25]  S. Iaccarino,et al.  DEFORMATION AND FLUID FLOW IN THE MUNSIARI THRUST (NW INDIA): A PRELIMINARY FLUID INCLUSION STUDY , 2016 .

[26]  J. Platt Influence of shear heating on microstructurally defined plate boundary shear zones , 2015 .

[27]  S. Iaccarino,et al.  Tectonometamorphic discontinuities in the Greater Himalayan Sequence: a local or a regional feature? , 2015 .

[28]  A. Langone,et al.  Pressure-temperature-time-deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki Valley (central Nepal); investigation of late Eocene-early Oligocene melting processes , 2015 .

[29]  J. Pfänder,et al.  40Ar–39Ar age constraint on deformation and brittle–ductile transition of the Main Central Thrust and the South Tibetan Detachment zone from Dhauliganga valley, Garhwal Himalaya, India , 2015 .

[30]  S. S. Thakur,et al.  A P–T pseudosection modelling approach to understand metamorphic evolution of the Main Central Thrust Zone in the Alaknanda valley, NW Himalaya , 2015, Contributions to Mineralogy and Petrology.

[31]  H. Massonne Wealth of P-T-t information in medium-high grade metapelites: Example from the Jubrique Unit of the Betic Cordillera, S Spain , 2014 .

[32]  R. Parrish,et al.  Developing an inverted Barrovian sequence; insights from monazite petrochronology , 2014 .

[33]  R. Law Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review , 2014 .

[34]  M. Kohn Himalayan Metamorphism and Its Tectonic Implications , 2014 .

[35]  C. Groppo,et al.  The geology between Khimti Khola and Likhu Khola valleys: a field trip along the Numbur Cheese Circuit (central-eastern Nepal Himalaya). , 2014 .

[36]  B. Schoene 4.10 – U–Th–Pb Geochronology , 2014 .

[37]  S. Iaccarino,et al.  A geological journey through the deepest gorge on Earth:the Kali Gandaki valley section, west-central Nepal , 2014 .

[38]  A. Langone,et al.  Tectonometamorphic discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya): Insights on the exhumation of crystalline rocks , 2013 .

[39]  C. Beaumont,et al.  On the origin of orogens , 2013 .

[40]  B. Grasemann,et al.  Deformation temperatures and flow vorticities near the base of the Greater Himalayan Series, Sutlej Valley and Shimla Klippe, NW India , 2013 .

[41]  H. Massonne Constructing the Pressure–Temperature Path of Ultrahigh-Pressure Rocks , 2013 .

[42]  Y. Podladchikov,et al.  Tectonic overpressure in weak crustal‐scale shear zones and implications for the exhumation of high‐pressure rocks , 2013 .

[43]  M. Jercinovic,et al.  Tectonic interpretation of metamorphic tectonites: integrating compositional mapping, microstructural analysis and in situ monazite dating , 2012 .

[44]  C. Spencer,et al.  The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India , 2012 .

[45]  C. Spencer,et al.  Depositional provenance of the Himalayan metamorphic core of Garhwal region, India: Constrained by U–Pb and Hf isotopes in zircons , 2011 .

[46]  I. Dunkl,et al.  Metamorphic evolution of the Tethyan Himalayan flysch in SE Tibet , 2011 .

[47]  R. Gloaguen,et al.  Kinematic evolution of the eastern Tethyan Himalaya: constraints from magnetic fabric and structural properties of the Triassic flysch in SE Tibet , 2011 .

[48]  R. Jamieson,et al.  Metamorphic history of a syn‐convergent orogen‐parallel detachment: The South Tibetan detachment system, Bhutan Himalaya , 2010 .

[49]  Konstantin Petrakakis,et al.  The computation of equilibrium assemblage diagrams with Theriak/Domino software , 2010 .

[50]  J. Avouac,et al.  Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography , 2010 .

[51]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[52]  M. Searle,et al.  Timing of Midcrustal Metamorphism, Melting, and Deformation in the Mount Everest Region of Southern Tibet Revealed by U(‐Th)‐Pb Geochronology , 2009, The Journal of Geology.

[53]  F. Herman,et al.  The Kumaun and Garwhal Lesser Himalaya, India: Part 2. Thermal and deformation histories , 2009 .

[54]  Andreas Brandelik,et al.  CALCMIN - an EXCEL™ Visual Basic application for calculating mineral structural formulae from electron microprobe analyses , 2009, Comput. Geosci..

[55]  M. Searle,et al.  Defining the Himalayan Main Central Thrust in Nepal , 2008, Journal of the Geological Society.

[56]  T. Holland,et al.  Burial and exhumation history of a Lesser Himalayan schist: Recording the formation of an inverted metamorphic sequence in NW India , 2007 .

[57]  R. Powell,et al.  The pressure dependence of the zirconium‐in‐rutile thermometer , 2007 .

[58]  M. Tiepolo,et al.  High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS , 2007 .

[59]  Michael J. Jercinovic,et al.  Geochronology: Understanding Geologic Processes by Integrating Composition and Chronology , 2007 .

[60]  Rocnn Pownr Optimal geothermometry and geobarometry , 2007 .

[61]  C. Beaumont,et al.  The orogenic superstructure-infrastructure concept: Revisited, quantified, and revived , 2006 .

[62]  C. Beaumont,et al.  Crustal flow modes in large hot orogens , 2006, Geological Society, London, Special Publications.

[63]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[64]  Richard L. Brown,et al.  Correlations between chemical and age domains in monazite, and metamorphic reactions involving major pelitic phases: an integration of ID-TIMS and SHRIMP geochronology with Y?Th?U X-ray mapping , 2004 .

[65]  T. Evans A method for calculating effective bulk composition modification due to crystal fractionation in garnet‐bearing schist: implications for isopleth thermobarometry , 2004 .

[66]  B. Grasemann,et al.  Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: Evidence for tectonic extrusion coupled to fluvial erosion , 2004 .

[67]  K. Hodges,et al.  Tectonometamorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri, central Nepal , 2003 .

[68]  J. Ferry,et al.  Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology , 2003 .

[69]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[70]  R. Carosi,et al.  Is there any detachment in the Lower Dolpo (western Nepal) , 2002 .

[71]  B. N. Upreti,et al.  Records of the evolution of the Himalayan orogen from in situ Th–Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal , 2002 .

[72]  F. Spear,et al.  Apatite, Monazite, and Xenotime in Metamorphic Rocks , 2002 .

[73]  B. Grasemann,et al.  Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion , 2001, Geological Magazine.

[74]  N. Harris,et al.  Fluid-enhanced melting during prograde metamorphism , 2001, Journal of the Geological Society.

[75]  J. Bunbury,et al.  Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya , 2000 .

[76]  K. Hodges Tectonics of the Himalaya and southern Tibet from two perspectives , 2000 .

[77]  B. Grasemann,et al.  Flow controlled inverted metamorphism in shear zones , 1999 .

[78]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[79]  K. Stüwe Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures , 1997 .

[80]  C. Beaumont,et al.  Tectonic assembly of inverted metamorphic sequences , 1996 .

[81]  R. Parrish,et al.  Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya , 1996 .

[82]  Martin Frey,et al.  Petrogenesis of Metamorphic Rocks , 2023, Springer Textbooks in Earth Sciences, Geography and Environment.

[83]  A. Jain,et al.  Inverted metamorphism in the intracontinental ductile shear zone during Himalayan collision tectonics , 1993 .

[84]  P. Molnar,et al.  The interpretation of inverted metamorphic isograds using simple physical calculations , 1993 .

[85]  F. Spear Metamorphic phase equilibria and pressure-temperature-time paths , 1993 .

[86]  B. Burchfiel,et al.  The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt , 1992 .

[87]  A. Stäubli Polyphase metamorphism and the development of the Main Central Thrust , 1989 .

[88]  M. Searle,et al.  Thermal model for the Zanskar Himalaya , 1989 .

[89]  K. Hodges,et al.  Thermal evolution of the Greater Himalaya, Garhwal, India , 1988 .

[90]  J. Burg,et al.  Inverted metamorphic zonation and large-scale thrusting in the Variscan Belt: an example in the French Massif Central , 1984, Geological Society, London, Special Publications.

[91]  P. Molnar,et al.  Calculated temperatures in overthrust terrains and possible combinations of heat sources responsible for the Tertiary granites in the greater Himalaya , 1983 .

[92]  K. Arita Origin of the inverted metamorphism of the lower Himalayas, Central Nepal , 1983 .

[93]  K. Valdiya The two intracrustal boundary thrusts of the Himalaya , 1980 .

[94]  A. Gansser,et al.  Central Himalaya : geological observations of the Swiss Expedition, 1936 , 1975 .

[95]  G. Wasserburg,et al.  U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions , 1972 .