A Higher Order Perturbative Parton Evolution Toolkit (HOPPET)

Abstract This document describes a Fortran 95 package for carrying out DGLAP evolution and other common manipulations of parton distribution functions (PDFs). The PDFs are represented on a grid in x -space so as to avoid limitations on the functional form of input distributions. Good speed and accuracy are obtained through the representation of splitting functions in terms of their convolution with a set of piecewise polynomial basis functions, and Runge–Kutta techniques are used for the evolution in Q . Unpolarised evolution is provided to NNLO, including heavy-quark thresholds in the MS ¯ scheme, and longitudinally polarised evolution to NLO. The code is structured so as to provide simple access to the objects representing splitting functions and PDFs, making it possible for a user to extend the facilities already provided. A streamlined interface is also available, facilitating use of the evolution part of the code from F77 and C/C++. Program summary Program title: HOPPET Catalogue identifier: AEBZ_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEBZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public License No. of lines in distributed program, including test data, etc.: 61 001 No. of bytes in distributed program, including test data, etc.: 270 312 Distribution format: tar.gz Programming language: Fortran 95 Computer: All Operating system: All RAM: ≲10 MB Classification: 11.5 Nature of problem: Solution of the DGLAP evolution equations up to NNLO (NLO) for unpolarised (longitudinally polarised) PDFs, and provision of tools to facilitate manipulation (convolutions, etc.) of PDFs with user-defined coefficient and splitting functions. Solution method: Representation of PDFs on a grid in x , adaptive integration of splitting functions to reduce them to a discretised form, obtaining fast convolutions that are equivalent to integration with an interpolated form of the PDFs; Runge–Kutta solution of the Q evolution, and its caching so as to speed up repeated evolution with different initial conditions. Restrictions: PDFs should be smooth on the scale of the discretisation in x . Running time: A few seconds for initialisation, then ∼10 ms for creating a tabulation with a relative accuracy of 10 −4 from a new initial condition (on a 3.4 GHz Pentium IV processor). Further details in Section 9.2.

[1]  G. Salam,et al.  Renormalization group improved small x Green's function , 2003, hep-ph/0307188.

[2]  W. L. van Neerven,et al.  Heavy quark coefficient functions at asymptotic values Q2>>m2 , 1996, hep-ph/9601302.

[3]  S. Bethke Experimental tests of asymptotic freedom , 1996, hep-ex/9609014.

[4]  Neural network determination of parton distributions: the nonsinglet case , 2007, hep-ph/0701127.

[5]  G. Korchemsky,et al.  Anomalous dimensions of high-spin operators beyond the leading order , 2007 .

[6]  A. Vogt,et al.  NNLO evolution of deep-inelastic structure functions: the non-singlet case , 1999 .

[7]  G. Salam,et al.  Resummed event-shape variables in DIS , 2002, hep-ph/0208073.

[8]  G. Zanderighi,et al.  Principles of general final-state resummation and automated implementation , 2004, hep-ph/0407286.

[9]  P. Ciafaloni,et al.  Electroweak evolution equations , 2005, hep-ph/0505047.

[10]  Michael Metcalf,et al.  Fortran 90/95 explained , 1996 .

[11]  William H. Press,et al.  Numerical recipes in Fortran 77 and Fortran 90 : the art of scientific and parallel computing , 1996 .

[12]  D. Florian,et al.  Global analysis of fragmentation functions for protons and charged hadrons , 2007, 0707.1506.

[13]  K. Lassila-Perini,et al.  The QCD/SM working group: Summary report , 2002, hep-ph/0204316.

[14]  Evolution of parton distributions , 1997, hep-ph/9706213.

[15]  N=4 SUSY Yang--Mills: three loops made simple(r) , 2006, hep-th/0612248.

[16]  J. Huston,et al.  New generation of parton distributions with uncertainties from global QCD analysis , 2002, hep-ph/0201195.

[17]  Alessandro Cafarella,et al.  Direct solution of renormalization group equations of QCD in x-space: NLO implementations at leading twist , 2004, Comput. Phys. Commun..

[18]  A Fast and precise method to solve the Altarelli-Parisi equations in x space , 2001, hep-ph/0104013.

[19]  J. Pumplin,et al.  Heavy quark mass effects in deep inelastic scattering and global QCD analysis , 2007 .

[20]  A. Vogt,et al.  The Three-loop splitting functions in QCD: The Singlet case , 2004, hep-ph/0404111.

[21]  R. Petronzio,et al.  Evolution of parton densities beyond leading order. The non-singlet case , 1980 .

[22]  Marco Guzzi,et al.  Precision studies of the NNLO DGLAP evolution at the LHC with Candia , 2008, Comput. Phys. Commun..

[23]  Strong coupling constant with flavor thresholds at four loops in the MS scheme , 1997, hep-ph/9706430.

[24]  R. Petronzio,et al.  Singlet Parton Densities Beyond Leading Order , 1980 .

[25]  W. L. van Neerven,et al.  The calculation of the two-loop spin splitting functions $P_{ij}^{(1)}(x)$ , 1995, hep-ph/9506451.

[26]  M. Dittmar,et al.  Parton distributions: Summary report for the HERA - LHC workshop , 2005 .

[27]  A. Mitov,et al.  Next-to-next-to-leading order evolution of non-singlet fragmentation functions , 2006, hep-ph/0604053.

[28]  R. S. Thorne,et al.  Update of Parton Distributions at NNLO , 2007, 0706.0459.

[29]  T.Gehrmann,et al.  Numerical evaluation of two-dimensional harmonic polylogarithms , 2002 .

[30]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[31]  Alan D. Martin,et al.  NNLO global parton analysis , 2002, hep-ph/0201127.

[32]  J. Smith,et al.  Charm electroproduction viewed in the variable-flavour number scheme versus fixed-order perturbation theory , 1996, hep-ph/9612398.

[33]  R. Thorne,et al.  Comparison of NNLO DIS scheme splitting functionswith results from exact gluon kinematics at small x , 2005, hep-ph/0507244.

[34]  A. Vogt,et al.  Efficient evolution of unpolarized and polarized parton distributions with QCD-Pegasus , 2004, Comput. Phys. Commun..

[35]  G. Zanderighi,et al.  Accurate QCD predictions for heavy-quark jets at the Tevatron and LHC , 2007, 0704.2999.

[36]  W. Vogelsang The spin-dependent two-loop splitting functions , 1996, hep-ph/9603366.

[37]  Giulia Zanderighi,et al.  Resummed event shapes at hadron - hadron colliders , 2004, hep-ph/0407287.

[38]  R. S. Thorne,et al.  Parton distributions incorporating QED contributions , 2005 .

[39]  G. Parisi,et al.  Asymptotic Freedom in Parton Language , 1977 .

[40]  L. Schoeffel An elegant and fast method to solve QCD evolution equations. Application to the determination of the gluon content of the Pomeron , 1999 .

[41]  W. Vogelsang,et al.  Next-to-leading order evolution of polarized and unpolarized fragmentation functions , 1996, hep-ph/9612250.