Efficient local energy dissipation preserving algorithms for the Cahn-Hilliard equation

Abstract In this paper, we show that the Cahn–Hilliard equation possesses a local energy dissipation law, which is independent of boundary conditions and produces much more information of the original problem. To inherit the intrinsic property, we derive three novel local structure-preserving algorithms for the 2D Cahn–Hilliard equation by the concatenating method. In particular, when the nonlinear bulk potential f ( ϕ ) in the equation is chosen as the Ginzburg–Landau double-well potential, the method discussed by Zhang and Qiao (2012) [50] is a special case of our scheme II. Thanks to the Leibnitz rules and properties of operators, the three schemes are rigorously proven to conserve the discrete local energy dissipation law in any local time–space region. Under periodic boundary conditions, the schemes are proven to possess the discrete mass conservation and total energy dissipation laws. Numerical experiments are conducted to show the performance of the proposed schemes.

[1]  D. Furihata,et al.  Finite Difference Schemes for ∂u∂t=(∂∂x)αδGδu That Inherit Energy Conservation or Dissipation Property , 1999 .

[2]  Yushun Wang,et al.  Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system , 2013, J. Comput. Phys..

[3]  Xiaofeng Yang,et al.  Numerical Approximations for Allen-Cahn Type Phase Field Model of Two-Phase Incompressible Fluids with Moving Contact Lines , 2017 .

[4]  Jie Shen,et al.  Efficient energy stable schemes with spectral discretization in space for anisotropic , 2013 .

[5]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[6]  H. Gómez,et al.  Computational Phase‐Field Modeling , 2017 .

[7]  Zhi-zhong Sun,et al.  A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation , 1995 .

[8]  Xiaofeng Yang,et al.  A novel linear second order unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid crystals , 2017 .

[9]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[10]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[11]  John William Strutt,et al.  Scientific Papers: On the Theory of Surface Forces. II. Compressible Fluids , 2009 .

[12]  Bin Wang,et al.  Local structure-preserving algorithms for partial differential equations , 2008 .

[13]  Brynjulf Owren,et al.  A General Framework for Deriving Integral Preserving Numerical Methods for PDEs , 2011, SIAM J. Sci. Comput..

[14]  Andreas Prohl,et al.  Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.

[15]  Zhonghua Qiao,et al.  An Adaptive Time-Stepping Strategy for the Cahn-Hilliard Equation , 2012 .

[16]  Jie Shen,et al.  Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Thomas J. R. Hughes,et al.  Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations , 2015 .

[18]  Zhonghua Qiao,et al.  Characterizing the Stabilization Size for Semi-Implicit Fourier-Spectral Method to Phase Field Equations , 2014, SIAM J. Numer. Anal..

[19]  Daozhi Han,et al.  Numerical Analysis of Second Order, Fully Discrete Energy Stable Schemes for Phase Field Models of Two-Phase Incompressible Flows , 2017, J. Sci. Comput..

[20]  Lei Chen,et al.  A Comparison of Fourier Spectral Iterative Perturbation Method and Finite Element Method in Solving Phase-Field Equilibrium Equations , 2017 .

[21]  Francisco Guillén-González,et al.  Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models , 2014, Comput. Math. Appl..

[22]  Christian Kahle,et al.  Preconditioning of a coupled Cahn--Hilliard Navier--Stokes system , 2016, 1610.03991.

[23]  M ChooS,et al.  Cahn‐Hilliad方程式に関する保存型非線形差分スキーム‐II , 2000 .

[24]  Xiaofeng Yang,et al.  Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends , 2016, J. Comput. Phys..

[25]  On the viscous Cahn-Hilliard equation with singular potential and inertial term , 2016, 1604.05539.

[26]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[27]  Charles M. Elliott,et al.  On the Cahn-Hilliard equation , 1986 .

[28]  Qiang Du,et al.  A Fourier Spectral Moving Mesh Method for the Cahn-Hilliard Equation with Elasticity , 2009 .

[29]  Francisco Guillén-González,et al.  On linear schemes for a Cahn-Hilliard diffuse interface model , 2013, J. Comput. Phys..

[30]  Charles M. Elliott,et al.  The global dynamics of discrete semilinear parabolic equations , 1993 .

[31]  Dong Li,et al.  On Second Order Semi-implicit Fourier Spectral Methods for 2D Cahn–Hilliard Equations , 2017, J. Sci. Comput..

[32]  Keith Promislow,et al.  High accuracy solutions to energy gradient flows from material science models , 2014, J. Comput. Phys..

[33]  Junseok Kim Phase-Field Models for Multi-Component Fluid Flows , 2012 .

[34]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[35]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[36]  J. Lendvai,et al.  Correlation between resistivity increment and volume fraction of G.P. zones in an Al-3·2 wt % Zn-2·2 wt % Mg alloy , 1976 .

[37]  S. M. Choo,et al.  Conservative nonlinear difference scheme for the Cahn-Hilliard equation—II , 1998 .

[38]  Qi Wang,et al.  A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation , 2017, J. Comput. Phys..

[39]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[40]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[41]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[42]  Xiaofeng Yang,et al.  LCP droplet dispersions: a two-phase, diffuse-interface kinetic theory and global droplet defect predictions , 2012 .

[43]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[44]  Cheng Wang,et al.  An $H^2$ convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation , 2016 .

[45]  Yushun Wang,et al.  Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs , 2014, J. Comput. Phys..

[46]  Jian Zhang,et al.  Fast and accurate algorithms for simulating coarsening dynamics of Cahn–Hilliard equations , 2015 .

[47]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[48]  M. Gurtin,et al.  Structured phase transitions on a finite interval , 1984 .

[49]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[50]  Cheng Wang,et al.  A Second-Order, Weakly Energy-Stable Pseudo-spectral Scheme for the Cahn–Hilliard Equation and Its Solution by the Homogeneous Linear Iteration Method , 2016, J. Sci. Comput..

[51]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[52]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .