SK channels and the varieties of slow after‐hyperpolarizations in neurons

Action potentials and associated Ca2+ influx can be followed by slow after‐hyperpolarizations (sAHPs) caused by a voltage‐insensitive, Ca2+‐dependent K+ current. Slow AHPs are a widespread phenomenon in mammalian (including human) neurons and are present in both peripheral and central nervous systems. Although, the molecular identity of ion channels responsible for common membrane potential mechanisms has been largely determined, the nature of the channels that underlie the sAHPs in neurons, both in the brain and in the periphery, remains unresolved. This short review discusses why there is no clear molecular candidate for sAHPs.

[1]  R. Foehring,et al.  Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. , 1992, Journal of neurophysiology.

[2]  P. Schwindt,et al.  Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. , 1988, Journal of neurophysiology.

[3]  B. Bunney,et al.  Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca2+-activated K+ conductance , 2004, Experimental Brain Research.

[4]  J. L. Kenyon,et al.  Ryanodine-sensitive stores regulate the excitability of AH neurons in the myenteric plexus of guinea-pig ileum. , 2000, Journal of neurophysiology.

[5]  M. Shah,et al.  Clotrimazole analogues: effective blockers of the slow afterhyperpolarization in cultured rat hippocampal pyramidal neurones , 2001, British journal of pharmacology.

[6]  R. Nicoll,et al.  Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. , 1984, The Journal of physiology.

[7]  P. Pedarzani,et al.  Molecular determinants of Ca2+‐dependent K+ channel function in rat dorsal vagal neurones , 2000, The Journal of physiology.

[8]  P. Vincent,et al.  Serotonin suppresses the slow afterhyperpolarization in rat intralaminar and midline thalamic neurones by activating 5‐HT7 receptors , 2002, The Journal of physiology.

[9]  R. North The calcium‐dependent slow after‐hyperpolarization in myenteric plexus neurones with tetrodotoxin‐resistant action potentials , 1973, British journal of pharmacology.

[10]  Tetsuro Yamamoto,et al.  Electrophysiological properties and their modulation by norepinephrine in the ambiguus neurons of the guinea pig , 1995, Brain Research.

[11]  J. Connor,et al.  Specific involvement of Ca(2+)-calmodulin kinase II in cholinergic modulation of neuronal responsiveness. , 1992, Journal of neurophysiology.

[12]  P. Carlen,et al.  Analysis of current fluctuations during after‐hyperpolarization current in dentate granule neurones of the rat hippocampus. , 1997, The Journal of physiology.

[13]  J. Storm Potassium currents in hippocampal pyramidal cells. , 1990, Progress in brain research.

[14]  P. Sah Properties of channels mediating the apamin-insensitive afterhyperpolarization in vagal motoneurons. , 1995, Journal of neurophysiology.

[15]  J. Storm,et al.  Regional Differences in Distribution and Functional Expression of Small-Conductance Ca2+-Activated K+ Channels in Rat Brain , 2002, The Journal of Neuroscience.

[16]  S. Reuss,et al.  Components of after‐hyperpolarization in magnocellular neurones of the rat supraoptic nucleus in vitro , 1998, The Journal of physiology.

[17]  A. Gorman,et al.  Potassium conductance and internal calcium accumulation in a molluscan neurone , 1980, The Journal of physiology.

[18]  R. Nicoll,et al.  Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus , 1982, Nature.

[19]  N. Marrion,et al.  Gating properties of single SK channels in hippocampal CA1 pyramidal neurons. , 1999, Biophysical journal.

[20]  R. Warth,et al.  Characterisation of the Rat SK4/IK1 K+ Channel , 2001, Cellular Physiology and Biochemistry.

[21]  D. Weinreich,et al.  Calcium regulation of a slow post-spike hyperpolarization in vagal afferent neurons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Magleby,et al.  Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture , 1981, Nature.

[23]  J. Bargas,et al.  Charybdotoxin and apamin sensitivity of the calcium-dependent repolarization and the afterhyperpolarization in neostriatal neurons. , 1992, Journal of neurophysiology.

[24]  N. Marrion,et al.  β-Adrenergic Stimulation Selectively Inhibits Long-Lasting L-Type Calcium Channel Facilitation in Hippocampal Pyramidal Neurons , 1997, The Journal of Neuroscience.

[25]  Alcino J. Silva,et al.  Functional and Molecular Aspects of Voltage‐Gated K+ Channel β Subunits , 1999, Annals of the New York Academy of Sciences.

[26]  G. Hirst,et al.  Two types of neurones in the myenteric plexus of duodenum in the guinea‐pig , 1974, The Journal of physiology.

[27]  S. Charpak,et al.  Effect of bicuculline on thalamic activity: a direct blockade of IAHP in reticularis neurons. , 1998, Journal of neurophysiology.

[28]  T. Ishii,et al.  A human intermediate conductance calcium-activated potassium channel. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Colino,et al.  Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin , 1987, Nature.

[30]  D. A. Brown,et al.  Apamin and d-tubocurarine block the after-hyperpolarization of rat supraoptic neurosecretory neurons , 1987, Neuroscience Letters.

[31]  M. Hanani,et al.  Activity-dependent changes in intracellular calcium in myenteric neurons. , 1997, American journal of physiology. Gastrointestinal and liver physiology.

[32]  L. Zhang,et al.  Differential time-course of slow afterhyperpolarizations and associated Ca2+ transients in rat CA1 pyramidal neurons: further dissociation by Ca2+ buffer , 1999, Neuroscience.

[33]  A. Bruening-Wright,et al.  Bicuculline block of small-conductance calcium-activated potassium channels , 1999, Pflügers Archiv.

[34]  P. Schwindt,et al.  Calcium-dependent potassium currents in neurons from cat sensorimotor cortex. , 1992, Journal of neurophysiology.

[35]  R. Meech,et al.  Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. , 1975, The Journal of physiology.

[36]  R. North,et al.  Intracellular recording from the myenteric plexus of the guinea‐pig ileum , 1973, The Journal of physiology.

[37]  Helmut L. Haas,et al.  Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells , 1983, Nature.

[38]  J. W. Goh,et al.  Pharmacological and physiological properties of the after‐hyperpolarization current of bullfrog ganglion neurones. , 1987, The Journal of physiology.

[39]  D. McCormick,et al.  Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). , 1997, Journal of neurophysiology.

[40]  D. Weinreich,et al.  Ca2+-induced Ca2+ release mediates a slow post-spike hyperpolarization in rabbit vagal afferent neurons. , 1998, Journal of neurophysiology.

[41]  J. Furness,et al.  Action potential afterdepolarization mediated by a Ca2+-activated cation conductance in myenteric AH neurons , 2002, Neuroscience.

[42]  N. Marrion,et al.  Small-Conductance, Calcium-Activated Potassium Channels from Mammalian Brain , 1996, Science.

[43]  Howard V. Wheal,et al.  Metabotropic-Mediated Kainate Receptor Regulation of IsAHP and Excitability in Pyramidal Cells , 2002, Neuron.

[44]  M. Correia,et al.  Potassium currents in mammalian and avian isolated type I semicircular canal hair cells. , 1994, Journal of neurophysiology.

[45]  K. Chandy,et al.  Calmodulin Mediates Calcium-dependent Activation of the Intermediate Conductance KCa Channel,IKCa1 * , 1999, The Journal of Biological Chemistry.

[46]  J. Storm,et al.  Action potential repolarization and a fast after‐hyperpolarization in rat hippocampal pyramidal cells. , 1987, The Journal of physiology.

[47]  W. N. Ross,et al.  Activity-dependent [Ca2+]i changes in guinea pig vagal motoneurons: relationship to the slow afterhyperpolarization. , 1997, Journal of neurophysiology.

[48]  D. Weinreich Bradykinin inhibits a slow spike afterhyperpolarization in visceral sensory neurons. , 1986, European journal of pharmacology.

[49]  R. S. Waters,et al.  Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons. , 1998, Journal of neurophysiology.

[50]  Pankaj Sah,et al.  Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: A role for Ca2+-activated Ca2+ release , 1991, Neuron.

[51]  M. Galvan,et al.  Outward currents in voltage‐clamped rat sympathetic neurones. , 1984, The Journal of physiology.

[52]  M. Charlton,et al.  Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices. , 1995, Journal of neurophysiology.

[53]  J. Isaacson,et al.  Channels underlying the slow afterhyperpolarization in hippocampal pyramidal neurons: neurotransmitters modulate the open probability , 1995, Neuron.

[54]  E. Honoré,et al.  Properties and modulation of mammalian 2P domain K+ channels , 2001, Trends in Neurosciences.

[55]  P. Schwindt,et al.  Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. , 1988, Journal of neurophysiology.

[56]  R. Nicoll,et al.  Characterization of a slow cholinergic post‐synaptic potential recorded in vitro from rat hippocampal pyramidal cells. , 1984, The Journal of physiology.

[57]  R. Fettiplace,et al.  Monitoring calcium in turtle hair cells with a calcium‐activated potassium channel. , 1996, The Journal of physiology.

[58]  M. Umemiya,et al.  Inhibition of N‐ and P‐type calcium currents and the after‐hyperpolarization in rat motoneurones by serotonin. , 1995, The Journal of physiology.

[59]  T. K. Smith,et al.  Diverse ionic currents and electrical activity of cultured myenteric neurons from the guinea pig proximal colon. , 2000, Journal of neurophysiology.

[60]  R. Canella,et al.  The slow Ca(2+)‐activated K+ current, IAHP, in the rat sympathetic neurone. , 1995, The Journal of physiology.

[61]  P. Pedarzani,et al.  An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Weinreich,et al.  Serotonin increases excitability of rabbit C-fiber neurons by two distinct mechanisms. , 1989, Journal of applied physiology.

[63]  A. Alonso,et al.  Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. , 1997, Journal of neurophysiology.

[64]  D. Jenkinson,et al.  bis-Quinolinium cyclophanes: 8,14-diaza-1,7(1, 4)-diquinolinacyclotetradecaphane (UCL 1848), a highly potent and selective, nonpeptidic blocker of the apamin-sensitive Ca(2+)-activated K(+) channel. , 2000, Journal of medicinal chemistry.

[65]  Wendy W. Wu,et al.  Age-Related Enhancement of the Slow Outward Calcium-Activated Potassium Current in Hippocampal CA1 Pyramidal Neurons In Vitro , 2002, The Journal of Neuroscience.

[66]  P. Adams,et al.  Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. , 1986, Journal of neurophysiology.

[67]  Pankaj Sah,et al.  Ca2+-activated K+ currents in neurones: types, physiological roles and modulation , 1996, Trends in Neurosciences.

[68]  H. C. Moises,et al.  Metabotropic glutamate receptor agonist ACPD inhibits some, but not all, muscarinic‐sensitive K+ conductances in basolateral amygdaloid neurons , 1994, Synapse.

[69]  H. Ohmori,et al.  Acetylcholine increases intracellular Ca2+ concentration and hyperpolarizes the guinea-pig outer hair cell , 1993, Hearing Research.

[70]  Pankaj Sah,et al.  Calcium‐Activated Potassium Currents In Mammalian Neurons , 2000, Clinical and experimental pharmacology & physiology.

[71]  T. Akita,et al.  Functional Triads Consisting of Ryanodine Receptors, Ca2+ Channels, and Ca2+-Activated K+ Channels in Bullfrog Sympathetic Neurons , 2000, The Journal of general physiology.

[72]  D. McCormick,et al.  Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro. , 1988, Journal of neurophysiology.

[73]  L. Toro,et al.  A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[74]  D. Prince,et al.  A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. , 1980, Journal of neurophysiology.

[75]  T. Ishii,et al.  Determinants of Apamin and d-Tubocurarine Block in SK Potassium Channels* , 1997, The Journal of Biological Chemistry.

[76]  C. Polosa,et al.  Afterhyperpolarization mechanisms in cat sympathetic preganglionic neuron in vitro. , 1986, Journal of neurophysiology.

[77]  Neil V Marrion,et al.  Calcium-activated potassium channels , 1998, Current Opinion in Neurobiology.

[78]  C. Polosa,et al.  Heterogeneity of the afterhyperpolarization of sympathetic preganglionic neurons. , 1993, The Kurume medical journal.

[79]  H. Tatsumi,et al.  Measurement of the intracellular calcium concentration in guinea-pig myenteric neurons by using fura-2 , 1988, Brain Research.

[80]  B. Lancaster,et al.  Novel action of BAPTA series chelators on intrinsic K+ currents in rat hippocampal neurones , 2000, The Journal of physiology.

[81]  M. Watanabe,et al.  Blockade of Ca‐activated K conductance by apamin in rat sympathetic neurones , 1986, British journal of pharmacology.

[82]  D. Weinreich,et al.  Long-duration spike afterhyperpolarizations in neurons from the guinea pig superior cervical ganglion , 1988, Neuroscience Letters.

[83]  J. Furness,et al.  PKA‐mediated inhibition of a novel K+ channel underlies the slow after‐hyperpolarization in enteric AH neurons , 2003, The Journal of physiology.

[84]  M. Shah,et al.  Ca(2+) channels involved in the generation of the slow afterhyperpolarization in cultured rat hippocampal pyramidal neurons. , 2000, Journal of neurophysiology.

[85]  James T. Buchanan,et al.  Apamin reduces the late afterhyperpolarization of lamprey spinal neurons, with little effect on fictive swimming , 1992, Neuroscience Letters.

[86]  D. Weinreich,et al.  Prostaglandins block a Ca2+-dependent slow spike afterhyperpolarization independent of effects on Ca2+ influx in visceral afferent neurons , 1985, Brain Research.

[87]  L. Kaczmarek,et al.  hSK4, a member of a novel subfamily of calcium-activated potassium channels. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[88]  T. A. Pitler,et al.  Prolonged Ca2+-dependent afterhyperpolarizations in hippocampal neurons of aged rats. , 1984, Science.

[89]  D. G. Haylett,et al.  Ca2+ Channels Involved in the Generation of the Slow Afterhyperpolarization in Cultured Rat Hippocampal Pyramidal Neurons , 2000 .

[90]  J. Scuvée-Moreau,et al.  Evidence for a non-GABAergic action of quaternary salts of bicuculline on dopaminergic neurones , 1997, Neuropharmacology.

[91]  J. Edgerton,et al.  Distinct contributions of small and large conductance Ca2+‐activated K+ channels to rat Purkinje neuron function , 2003, The Journal of physiology.

[92]  Jochen Roeper,et al.  Differential Expression of the Small-Conductance, Calcium-Activated Potassium Channel SK3 Is Critical for Pacemaker Control in Dopaminergic Midbrain Neurons , 2001, The Journal of Neuroscience.

[93]  S. Olesen,et al.  Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels , 2000, Pflügers Archiv.

[94]  B. Gustafsson,et al.  Evidence for two types of afterhyperpolarization in CA1 pyramidal cells in the hippocampus , 1981, Brain Research.

[95]  R. Nicoll,et al.  The coupling of neurotransmitter receptors to ion channels in the brain. , 1988, Science.

[96]  J. F. Storm,et al.  Evidence that Ca/calmodulin-dependent protein kinase mediates the modulation of the Ca2+-dependent K+ current, IAHP, by acetylcholine, but not by glutamate, in hippocampal neurons , 1996, Pflügers Archiv.

[97]  A. Janowsky,et al.  Domains Responsible for Constitutive and Ca2+-Dependent Interactions between Calmodulin and Small Conductance Ca2+-Activated Potassium Channels , 1999, The Journal of Neuroscience.

[98]  R. Andrade,et al.  5-Hydroxytryptamine4 receptors reduce afterhyperpolarization in hippocampus by inhibiting calcium-induced calcium release. , 1996, Molecular pharmacology.

[99]  K. Krnjević,et al.  Injections of calcium ions into spinal motoneurones , 1972, The Journal of physiology.

[100]  P. Pedarzani,et al.  Developmental Regulation of Small-Conductance Ca2+-Activated K+ Channel Expression and Function in Rat Purkinje Neurons , 2002, The Journal of Neuroscience.

[101]  P. Pedarzani,et al.  Differential Distribution of Three Ca2+-Activated K+ Channel Subunits, SK1, SK2, and SK3, in the Adult Rat Central Nervous System , 2000, Molecular and Cellular Neuroscience.

[102]  P. Reinhart,et al.  Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. , 1999, Circulation research.

[103]  H. C. Moises,et al.  Muscarinic responses of rat basolateral amygdaloid neurons recorded in vitro. , 1992, The Journal of physiology.

[104]  Johan F. Storm,et al.  Pka mediates the effects of monoamine transmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons , 1993, Neuron.

[105]  Y. Yarom,et al.  An analysis of the long‐lasting after‐hyperpolarization of guinea‐pig vagal motoneurones. , 1992, The Journal of physiology.

[106]  B. Lancaster,et al.  Calcium activates two types of potassium channels in rat hippocampal neurons in culture , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[107]  S. A. Shefner,et al.  Calcium‐activated hyperpolarizations in rat locus coeruleus neurons in vitro. , 1993, The Journal of physiology.

[108]  A. Constanti,et al.  Calcium‐dependent potassium conductance in guinea‐pig olfactory cortex neurones in vitro. , 1987, The Journal of physiology.

[109]  E. R. Kandel,et al.  Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+channels of Aplysia sensory neurones in cell-free membrane patches , 1985, Nature.

[110]  K. Muraki,et al.  SK4 encodes intermediate conductance Ca2+-activated K+ channels in mouse urinary bladder smooth muscle cells. , 2000, Japanese journal of pharmacology.

[111]  M. E. Wisgirda,et al.  Characteristics of multiple Ca(2+)‐activated K+ channels in acutely dissociated chick ciliary‐ganglion neurones. , 1991, The Journal of physiology.

[112]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[113]  G. Giménez-Gallego,et al.  Purification and characterization of a unique, potent inhibitor of apamin binding from Leiurus quinquestriatus hebraeus venom. , 1988, The Journal of biological chemistry.

[114]  F. Pouille,et al.  Control of the propagation of dendritic low‐threshold Ca2+ spikes in Purkinje cells from rat cerebellar slice cultures , 2002, The Journal of physiology.

[115]  P. Schwindt,et al.  Norepinephrine selectively reduces slow Ca2+- and Na+-mediated K+ currents in cat neocortical neurons. , 1989, Journal of neurophysiology.

[116]  M. Shah,et al.  The pharmacology of hSK1 Ca2+‐activated K+ channels expressed in mammalian cell lines , 2000, British journal of pharmacology.

[117]  N. Marrion,et al.  Gating of Recombinant Small-Conductance Ca-activated K+ Channels by Calcium , 1998, The Journal of general physiology.

[118]  P. Pedarzani,et al.  Medium afterhyperpolarization and firing pattern modulation in interneurons of stratum radiatum in the CA3 hippocampal region. , 2001, Journal of neurophysiology.

[119]  J F Storm,et al.  An after‐hyperpolarization of medium duration in rat hippocampal pyramidal cells. , 1989, The Journal of physiology.

[120]  J. Storm,et al.  Protein kinase A mediates the modulation of the slow Ca(2+)-dependent K(+) current, I(sAHP), by the neuropeptides CRF, VIP, and CGRP in hippocampal pyramidal neurons. , 2000, Journal of neurophysiology.

[121]  R. Andrew,et al.  Intracellular study of calcium‐related events in cat magnocellular neuroendocrine cells. , 1991, The Journal of physiology.

[122]  K. Magleby,et al.  Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle , 1984, The Journal of general physiology.

[123]  D. McCormick,et al.  Convergence and divergence of neurotransmitter action in human cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[124]  G. Hirst,et al.  The slow calcium‐dependent potassium current in a myenteric neurone of the guinea‐pig ileum. , 1985, The Journal of physiology.

[125]  Serge Charpak,et al.  Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters , 1990, Nature.

[126]  R. Nicoll,et al.  Cyclic adenosine 3',5'‐monophosphate mediates beta‐receptor actions of noradrenaline in rat hippocampal pyramidal cells. , 1986, The Journal of physiology.

[127]  D. McCormick,et al.  Mechanisms of oscillatory activity in guinea‐pig nucleus reticularis thalami in vitro: a mammalian pacemaker. , 1993, The Journal of physiology.

[128]  D. Weinreich,et al.  Histamine H1 receptor activation blocks two classes of potassium current, IK(rest) and IAHP to excite ferret vagal afferents , 1997, The Journal of physiology.

[129]  J. Wood,et al.  Elevation of adenosine 3',5'‐phosphate mimics slow synaptic excitation in myenteric neurones of the guinea‐pig. , 1986, The Journal of physiology.

[130]  G. Gardos,et al.  The function of calcium in the potassium permeability of human erythrocytes. , 1958, Biochimica et biophysica acta.

[131]  C. McBain,et al.  Potassium conductances underlying repolarization and after‐hyperpolarization in rat CA1 hippocampal interneurones. , 1995, The Journal of physiology.

[132]  S. Grillner,et al.  Effects of 5-hydroxytryptamine on the afterhyperpolarization, spike frequency regulation, and oscillatory membrane properties in lamprey spinal cord neurons. , 1989, Journal of neurophysiology.

[133]  R. Nicoll,et al.  Properties of two calcium‐activated hyperpolarizations in rat hippocampal neurones. , 1987, The Journal of physiology.

[134]  J. Reynaud,et al.  Analysis of whole‐cell currents by patch clamp of guinea‐pig myenteric neurones in intact ganglia , 2002, The Journal of physiology.

[135]  K. Magleby,et al.  Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle , 1986, Nature.

[136]  D. Haage,et al.  The functional role of a bicuculline‐sensitive Ca2+‐activated K+ current in rat medial preoptic neurons , 2001, The Journal of physiology.

[137]  B. Gähwiler,et al.  L-Type Ca2+ channels mediate the slow Ca2+-dependent afterhyperpolarization current in rat CA3 pyramidal cells in vitro. , 1998, Journal of neurophysiology.

[138]  Pankaj Sah,et al.  Physiological Role of Calcium-Activated Potassium Currents in the Rat Lateral Amygdala , 2002, The Journal of Neuroscience.

[139]  F. Christofi,et al.  FlCRhR/cyclic AMP signaling in myenteric ganglia and calbindin-D28 intrinsic primary afferent neurons involves adenylyl cyclases I, III and IV , 1999, Brain Research.

[140]  P. Reinhart,et al.  Molecular Cloning and Characterization of the Intermediate-Conductance Ca2+-Activated K+ Channel in Vascular Smooth Muscle , 1999 .

[141]  P. Carlen,et al.  Differential control of three after‐hyperpolarizations in rat hippocampal neurones by intracellular calcium buffering , 1999, The Journal of physiology.

[142]  J. Furness,et al.  TEA‐ and apamin‐resistant KCa channels in guinea‐pig myenteric neurons: slow AHP channels , 2002, The Journal of physiology.

[143]  Kamran Khodakhah,et al.  Somatic and Dendritic Small-Conductance Calcium-Activated Potassium Channels Regulate the Output of Cerebellar Purkinje Neurons , 2003, The Journal of Neuroscience.

[144]  Wood Jd,et al.  Intracellular study of tonic-type enteric neurons in guinea pig small intestine. , 1979 .

[145]  E. Kandel,et al.  Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones , 1982, Nature.

[146]  R. Nicoll,et al.  Epileptiform burst afterhyperolarization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. , 1980, Science.

[147]  Charles J. Wilson,et al.  Intrinsic Membrane Properties Underlying Spontaneous Tonic Firing in Neostriatal Cholinergic Interneurons , 2000, The Journal of Neuroscience.

[148]  R. Nicoll,et al.  Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[149]  P. Schwartzkroin,et al.  Effects of EGTA on the calcium-activated afterhyperpolarization in hippocampal CA3 pyramidal cells. , 1980, Science.

[150]  D. Jenkinson,et al.  Effects of quinine and apamin on the calcium‐dependent potassium permeability of mammalian hepatocytes and red cells. , 1981, The Journal of physiology.

[151]  D. Brown,et al.  Small (SKCa) Ca2+-activated K+ channels in cultured rat hippocampal pyramidal neurones , 1998, Pflügers Archiv.

[152]  T. Valiante,et al.  Tyrosine kinase inhibitors enhance a Ca(2+)‐activated K+ current (IAHP) and reduce IAHP suppression by a metabotropic glutamate receptor agonist in rat dentate granule neurones. , 1996, The Journal of physiology.

[153]  G. Kinney,et al.  Serotonergic Modulation of Supragranular Neurons in Rat Sensorimotor Cortex , 2002, The Journal of Neuroscience.

[154]  Max Planck,et al.  An apamin-sensitive Ca 21 -activated K 1 current in hippocampal pyramidal neurons , 1999 .

[155]  Charles J. Wilson,et al.  Apamin-Sensitive Small Conductance Calcium-Activated Potassium Channels, through their Selective Coupling to Voltage-Gated Calcium Channels, Are Critical Determinants of the Precision, Pace, and Pattern of Action Potential Generation in Rat Subthalamic Nucleus Neurons In Vitro , 2003, The Journal of Neuroscience.

[156]  D. Strøbæk,et al.  Pharmacological characterization of small‐conductance Ca2+‐activated K+ channels stably expressed in HEK 293 cells , 2000, British journal of pharmacology.

[157]  A. Marty,et al.  Ca-dependent K channels with large unitary conductance in chromaffin cell membranes , 1981, Nature.

[158]  R. North,et al.  Morphine augments calcium‐dependent potassium conductance in guinea‐pig myenteric neurones , 1984, British journal of pharmacology.

[159]  D. Bayliss,et al.  CNS Distribution of Members of the Two-Pore-Domain (KCNK) Potassium Channel Family , 2001, The Journal of Neuroscience.

[160]  L. Chalupa,et al.  Calcium-activated potassium conductances in retinal ganglion cells of the ferret. , 1998, Journal of neurophysiology.

[161]  J. Furness,et al.  Afterhyperpolarization current in myenteric neurons of the guinea pig duodenum. , 2001, Journal of neurophysiology.

[162]  秋田 天平 Functional Triads Consisting of Ryanodine Receptors,Ca[2+] Channels,and Ca[2+]-activated K[+] channels in Bullfrog Sympathetic Neurons : Plastic Modulation Action Potential , 2001 .

[163]  M. Kelly,et al.  The noradrenergic inhibition of an apamin-sensitive, small-conductance Ca2+-activated K+ channel in hypothalamic gamma-aminobutyric acid neurons: pharmacology, estrogen sensitivity, and relevance to the control of the reproductive axis. , 2001, The Journal of pharmacology and experimental therapeutics.

[164]  土井 直 Acetylcholine increases intracellular Ca[2+] concentration and hyperpolarizes the guinea-pig outer hair cell , 1993 .

[165]  N. Marrion,et al.  Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons , 1998, Nature.

[166]  Y. Matsuda,et al.  Depression of spike adaptation and afterhyperpolarization by 4-aminopyridine in hippocampal neurons , 1986, Neuroscience Letters.

[167]  K. Krnjević,et al.  Apamin depresses selectively the after-hyperpolarization of cat spinal motoneurons , 1987, Neuroscience Letters.

[168]  J. Joseph,et al.  Tamapin, a Venom Peptide from the Indian Red Scorpion (Mesobuthus tamulus) That Targets Small Conductance Ca2+-activated K+ Channels and Afterhyperpolarization Currents in Central Neurons* , 2002, The Journal of Biological Chemistry.

[169]  T. Ishii,et al.  Mechanism of calcium gating in small-conductance calcium-activated potassium channels , 1998, Nature.

[170]  Steven W. Johnson,et al.  Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive Ca2+-activated K+ currents , 1997, Neuroscience Letters.

[171]  D A Bayliss,et al.  Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. , 1993, Journal of neurophysiology.

[172]  A. Jean,et al.  Ionic basis for endogenous rhythmic patterns induced by activation of N-methyl-D-aspartate receptors in neurons of the rat nucleus tractus solitarii. , 1993, Journal of neurophysiology.

[173]  D. Jenkinson,et al.  SK3 is an important component of K+ channels mediating the afterhyperpolarization in cultured rat SCG neurones , 2001, The Journal of physiology.

[174]  J. Storm,et al.  Modulation of K + Channels in Hippocampal Neurons: Transmitters Acting via Cyclic AMP Enhance the Excitability of Hippocampal Neurons Through Kinase-Dependent and -Independent Modulation of AHP- and h-Channels , 2000 .

[175]  P. Dutar,et al.  Omega-conotoxin GVIA blocks synaptic transmission in the CA1 field of the hippocampus. , 1989, European journal of pharmacology.

[176]  M. Lazdunski,et al.  The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functions. , 1984, Biochemical and biophysical research communications.

[177]  C. Polosa,et al.  Noradrenaline modifies sympathetic preganglionic neuron spike and afterpotential , 1986, Brain Research.