On Two Parameters for Denoising With Non-Local Means

Non-local means (NLM) provides a very efficient procedure to denoise digital images. We study the influence of two important parameters on this algorithm: the size of the searching window and the weight given to the central patch. We verify numerically the common knowledge that the searching zone can be advantageously limited and we propose an efficient modification of the central weight based on the Stein's unbiased risk estimate principle.

[1]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[2]  O. Lepskii,et al.  On problems of adaptive estimation in white Gaussian noise , 1992 .

[3]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[4]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[5]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[6]  Michael Elad,et al.  On the origin of the bilateral filter and ways to improve it , 2002, IEEE Trans. Image Process..

[7]  J. Weickert,et al.  A ROTATIONALLY INVARIANT BLOCK MATCHING STRATEGY IMPROVING IMAGE DENOISING WITH NON-LOCAL MEANS , 2008 .

[8]  Dorin Comaniciu,et al.  A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift , 2004, Image Vis. Comput..

[9]  Dimitri Van De Ville,et al.  SURE-Based Non-Local Means , 2009, IEEE Signal Processing Letters.

[10]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[11]  L. Shires Image , 2018, Victorian Literature and Culture.

[12]  Charles Kervrann,et al.  Optimal Spatial Adaptation for Patch-Based Image Denoising , 2006, IEEE Transactions on Image Processing.

[13]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[14]  J. Salmon,et al.  An aggregator point of view on NL-Means , 2009, Optical Engineering + Applications.

[15]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[16]  Stéphane Mallat,et al.  Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.