Prediction of crack pattern distribution in reinforced concrete by coupling a strong discontinuity model of concrete cracking and a bond‐slip of reinforcement model

Purpose – To provide a reinforced concrete model including bonding coupled to a classical continuum damage model of concrete, capable of predicting numerically the crack pattern distribution in a RC structure, subjected to traction forces.Design/methodology/approach – A new coupling between bonding model and an alternative model for concrete cracking is proposed and analyzed. For concrete, proposes a damage‐like material model capable of combining two types of dissipative mechanisms: diffuse volume dissipation and localized surface dissipation.Findings – One of the most important contributions is the capacity of predicting maximal and minimal spacing of macro‐cracks, even if the exact location of cracks remains undetermined. Another contribution is to reiterate on the insufficiency of the local damage model of concrete to handle this class of problems; much in the same manner as for localization problem which accompany strain‐softening behavior.Practical implications – Bonding becomes very important to ev...

[1]  Leonard R. Herrmann,et al.  Development of a plasticity bond model for steel reinforcement , 1998 .

[2]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[3]  Edward L. Wilson,et al.  A modified method of incompatible modes , 1991 .

[4]  Jacky Mazars,et al.  Damage model for concrete‐like materials coupling cracking and friction, contribution towards structural damping: first uniaxial applications , 2000 .

[5]  J. Mazars A description of micro- and macroscale damage of concrete structures , 1986 .

[6]  J. Chaboche,et al.  Mechanics of solid materials: Identification and rheological classification of real solids , 1990 .

[7]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[8]  Franz-Josef Ulm,et al.  Computational mechanics of the steel–concrete interface , 2002 .

[9]  Damijan Markovic,et al.  Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures , 2003 .

[10]  Milan Jirásek,et al.  Embedded crack model. Part II: combination with smeared cracks , 2001 .

[11]  Enrico Spacone,et al.  Finite element formulations of one-dimensional elements with bond-slip , 2001 .

[12]  Edward L. Wilson,et al.  Unified computational model for static and dynamic frictional contact analysis , 1992 .

[13]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  Atef Daoud Etude expérimentale de la liaison entre l'acier et le béton autoplaçant : contribution à la modélisation numérique de l'interface , 2003 .

[16]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[17]  Adnan Ibrahimbegovic,et al.  Classical plasticity and viscoplasticity models reformulated: theoretical basis and numerical implementation , 1998 .

[18]  Adnan Ibrahimbegovic,et al.  Thermodynamic-based interface model for cohesive brittle materials : Application to bond slip in RC structures , 2006 .

[19]  Eduardo de Moraes Rego Fairbairn,et al.  Steel–concrete interface: revisiting constitutive and numerical modeling , 1999 .

[20]  J. Jaccoud Armature minimale pour le contrôle de la fissuration des structures en béton , 1987 .

[21]  Bibiana Luccioni,et al.  Bond-Slip in Reinforced Concrete Elements , 2005 .

[22]  Vitelmo V. Bertero,et al.  Local bond stress-slip relationships of deformed bars under generalized excitations , 1982 .

[23]  J. Clement Interface acier-beton et comportement des structures en beton arme : caracterisation, modelisation , 1987 .

[24]  Delphine Brancherie,et al.  Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure , 2003 .