Hyperspectral anomaly detection based on uniformly partitioned pixel

The objective of this paper is to develop an algorithm to detect anomaly in a hyperspectral image. The algorithm is based on a subspace model that is derived statistically. The anomaly detector is defined as the Mahalanobis distance of a residual from a pixel that is partitioned uniformly. The high correlation among adjacent components of the pixel is exploited by partitioning the pixel uniformly to improve anomaly detection. The residual is obtained by partialling out the main background from the pixel by predicting a linear combination of each partition of the pixel with a linear combination of the random variables representing the main background. Experimental results show that the anomaly detector outperforms conventional anomaly detectors.

[1]  Brian S. Penn Using self-organizing maps for anomaly detection in hyperspectral imagery , 2002, Proceedings, IEEE Aerospace Conference.

[2]  S Matteoli,et al.  A tutorial overview of anomaly detection in hyperspectral images , 2010, IEEE Aerospace and Electronic Systems Magazine.

[3]  A. Schaum Joint subspace detection of hyperspectral targets , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[4]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[5]  Maria Petrou,et al.  Spectral Unmixing With Negative and Superunity Abundances for Subpixel Anomaly Detection , 2009, IEEE Geoscience and Remote Sensing Letters.

[6]  John P. Kerekes,et al.  Unresolved target detection blind test project overview , 2010, Defense + Commercial Sensing.

[7]  Heesung Kwon,et al.  Kernel Eigenspace Separation Transform for Subspace Anomaly Detection in Hyperspectral Imagery , 2007, IEEE Geoscience and Remote Sensing Letters.

[8]  John Ingram,et al.  Hyperspectral anomaly detection based on minimum generalized variance method , 2008, SPIE Defense + Commercial Sensing.

[9]  Alan P. Schaum,et al.  Application of stochastic mixing models to hyperspectral detection problems , 1997, Defense, Security, and Sensing.

[10]  Charles A. Bouman,et al.  Evaluating and improving local hyperspectral anomaly detectors , 2011, 2011 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).

[11]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[12]  A. P. Schaum,et al.  Hyperspectral anomaly detection beyond RX , 2007, SPIE Defense + Commercial Sensing.

[13]  I. Reed,et al.  A Detection Algorithm for Optical Targets in Clutter , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[14]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[15]  Heesung Kwon,et al.  Adaptive anomaly detection using subspace separation for hyperspectral imagery , 2003 .

[16]  Edisanter Lo Variable factorization model based on numerical optimization for hyperspectral anomaly detection , 2012, Pattern Analysis and Applications.

[17]  Mehrdad Soumekh,et al.  Hyperspectral anomaly detection within the signal subspace , 2006, IEEE Geoscience and Remote Sensing Letters.

[18]  Chein-I Chang,et al.  Orthogonal subspace projection (OSP) revisited: a comprehensive study and analysis , 2005, IEEE Trans. Geosci. Remote. Sens..

[19]  Heesung Kwon,et al.  Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Edisanter Lo Variable subspace model for hyperspectral anomaly detection , 2011, Pattern Analysis and Applications.

[21]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[22]  Edisanter Lo Maximized subspace model for hyperspectral anomaly detection , 2011, Pattern Analysis and Applications.

[23]  John Ingram,et al.  Algorithm for detecting anomaly in hyperspectral imagery using factor analysis , 2011, Defense + Commercial Sensing.

[24]  Nasser M. Nasrabadi,et al.  A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery , 2007, SPIE Defense + Commercial Sensing.