Minibatch stochastic subgradient-based projection algorithms for feasibility problems with convex inequalities

[1]  Xingshi He,et al.  Introduction to Optimization , 2015, Applied Evolutionary Algorithms for Engineers Using Python.

[2]  Li Li,et al.  Accelerating Minibatch Stochastic Gradient Descent Using Typicality Sampling , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[3]  Volkan Cevher,et al.  Almost surely constrained convex optimization , 2019, ICML.

[4]  Peter Richtárik,et al.  Randomized Projection Methods for Convex Feasibility: Conditioning and Convergence Rates , 2019, SIAM J. Optim..

[5]  Ion Necoara,et al.  Faster Randomized Block Kaczmarz Algorithms , 2019, SIAM J. Matrix Anal. Appl..

[6]  Ion Necoara,et al.  Randomized projection methods for convex feasibility problems: conditioning and convergence rates , 2018, 1801.04873.

[7]  Chiranjib Bhattacharyya,et al.  Convex Optimization over Intersection of Simple Sets: improved Convergence Rate Guarantees via an Exact Penalty Approach , 2017, AISTATS.

[8]  I. Necoara,et al.  Nonasymptotic convergence of stochastic proximal point algorithms for constrained convex optimization , 2017, 1706.06297.

[9]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[10]  Mark W. Schmidt,et al.  A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method , 2012, ArXiv.

[11]  Angelia Nedic,et al.  Random algorithms for convex minimization problems , 2011, Math. Program..

[12]  Angelia Nedic,et al.  Random projection algorithms for convex set intersection problems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[13]  C. Badea,et al.  The rate of convergence in the method of alternating projections , 2010, 1006.2047.

[14]  Eduardo F. Camacho,et al.  Randomized Strategies for Probabilistic Solutions of Uncertain Feasibility and Optimization Problems , 2009, IEEE Transactions on Automatic Control.

[15]  Frank Deutsch,et al.  The rate of convergence for the cyclic projections algorithm I: Angles between convex sets , 2006, J. Approx. Theory.

[16]  Hong Yan,et al.  POCS-based blocking artifacts suppression using a smoothness constraint set with explicit region modeling , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[17]  Alfred O. Hero,et al.  Energy-based sensor network source localization via projection onto convex sets , 2005, IEEE Transactions on Signal Processing.

[18]  Heinz H. Bauschke,et al.  Hybrid projection-reflection method for phase retrieval. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  Giuseppe Carlo Calafiore,et al.  Stochastic algorithms for exact and approximate feasibility of robust LMIs , 2001, IEEE Trans. Autom. Control..

[20]  P. L. Combettes,et al.  Hilbertian convex feasibility problem: Convergence of projection methods , 1997 .

[21]  Patrick L. Combettes,et al.  Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections , 1997, IEEE Trans. Image Process..

[22]  Uriel G. Rothblum,et al.  Approximations to Solutions to Systems of Linear Inequalities , 1995, SIAM J. Matrix Anal. Appl..

[23]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in System and Control Theory , 1994, Studies in Applied Mathematics.

[24]  M. Ferris,et al.  Weak sharp minima in mathematical programming , 1993 .

[25]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[26]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[27]  Boris Polyak Random Algorithms for Solving Convex Inequalities , 2001 .

[28]  Heinz H. Bauschke Projection Algorithms: Results and Open Problems , 2001 .

[29]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[30]  Yongyi Yang,et al.  Vector Space Projections: A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics , 1998 .

[31]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[32]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[33]  J. Burkey,et al.  WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING , 1993 .

[34]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[35]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[36]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[37]  I. J. Schoenberg,et al.  The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.