Temperature-dependent dynamic correlations in suspensions of magnetic nanoparticles in a broad range of concentrations: a combined experimental and theoretical study.

The interweave of competing individual relaxations influenced by the presence of temperature and concentration dependent correlations is an intrinsic feature of superparamagnetic nanoparticle suspensions. This unique combination gives rise to multiple applications of such suspensions in medicine, nanotechnology and microfluidics. Here, using theory and experiment, we investigate dynamic magnetic susceptibility in a broad range of temperatures and frequencies. Our approach allows, for the first time to our knowledge, to separate clearly the effects of superparamagnetic particle polydispersity and interparticle magnetic interactions on the dynamic spectra of these systems. In this way, we not only provide a theoretical model that can predict well the dynamic response of magnetic nanoparticles systems, but also deepen the understanding of the dynamic nanoparticle self-assembly, opening new perspectives in tuning and controlling the magnetic behaviour of such systems in AC fields.

[1]  F. Sciortino,et al.  Janus particle synthesis, self-assembly and applications , 2012 .

[2]  A. Chaurasia,et al.  Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles , 2015 .

[3]  G. Goya,et al.  Influence of size distribution and field amplitude on specific loss power , 2015 .

[4]  B. Kuipers,et al.  Rotational Diffusion in Iron Ferrofluids , 2003 .

[5]  Shilpee Jain,et al.  Dielectric Relaxation in Biological Systems:Physical Principles, Methods and Applications , 2016 .

[6]  W. Kegel,et al.  Quantitative real-space analysis of self-assembled structures of magnetic dipolar colloids. , 2006, Physical review letters.

[7]  Chad A. Mirkin,et al.  Arrays of Magnetic Nanoparticles Patterned via “Dip‐Pen” Nanolithography , 2002 .

[8]  H. Ju,et al.  Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation. , 2010, Journal of chromatography. A.

[9]  F. Sciortino,et al.  No evidence of gas-liquid coexistence in dipolar hard spheres. , 2011, Physical review letters.

[10]  S. Nagy,et al.  Linear and nonlinear magnetic properties of ferrofluids. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Shouheng Sun,et al.  Synthesis and assembly of barium-doped iron oxide nanoparticles and nanomagnets. , 2015, Nanoscale.

[12]  Friedrich Kremer,et al.  Broadband dielectric spectroscopy , 2003 .

[13]  Jon Dobson,et al.  Magnetic micro- and nano-particle-based targeting for drug and gene delivery. , 2006, Nanomedicine.

[14]  David J. Pine,et al.  Cubic crystals from cubic colloids , 2011 .

[15]  A. Bakuzis,et al.  Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer? , 2016, Nanoscale.

[16]  A. Zubarev,et al.  Dynamic properties of moderately concentrated magnetic liquids , 1998 .

[17]  F. Müller,et al.  Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles--control of the intraparticle phase distribution. , 2015, Nanoscale.

[18]  Francesco Pedaci,et al.  Biological magnetometry: torque on superparamagnetic beads in magnetic fields. , 2015, Physical review letters.

[19]  F. Sciortino,et al.  Nonmonotonic magnetic susceptibility of dipolar hard-spheres at low temperature and density. , 2013, Physical review letters.

[20]  K. Trohidou,et al.  Susceptibility losses in heating of magnetic core/shell nanoparticles for hyperthermia: a Monte Carlo study of shape and size effects. , 2015, Nanoscale.

[21]  M. Shliomis,et al.  Theory of the Dynamic Susceptibility of Magnetic Fluids , 2007 .

[22]  C. Sangregorio,et al.  Evolution of the magnetic structure with chemical composition in spinel iron oxide nanoparticles. , 2015, Nanoscale.

[23]  Xinlin Yang,et al.  Preparation of ellipsoidal hematite/polymer hybrid materials and the corresponding hollow polymer ellipsoids , 2008 .

[24]  Alexandros Chremos,et al.  Magnetic properties of polydisperse ferrofluids: a critical comparison between experiment, theory, and computer simulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  A. Lebedev,et al.  Low-temperature susceptibility of concentrated magnetic fluids. , 2004, The Journal of chemical physics.

[26]  S. Maenosono,et al.  Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. , 2015, Nanoscale.

[27]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[28]  S. Kantorovich,et al.  Communication: Kinetic and pairing contributions in the dielectric spectra of electrolyte solutions. , 2014, The Journal of chemical physics.

[29]  W. Coffey,et al.  Simple approximate formulae for the magnetic relaxation time of single domain ferromagnetic particles with uniaxial anisotropy , 1994 .

[30]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[31]  L. Singh,et al.  Watching hydrogen-bonded structures in an alcohol convert from rings to chains. , 2012, Physical review letters.

[32]  S. Nagy,et al.  Comparison between theory and simulations for the magnetization and the susceptibility of polydisperse ferrofluids , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  A. Lebedev,et al.  Magnetic susceptibility of concentrated ferrocolloids , 2005 .

[34]  T. Coradin,et al.  Nanomaterials: A Danger or a Promise? , 2013 .

[35]  S. Hess,et al.  Nonequilibrium Dynamics and Magnetoviscosity of Moderately Concentrated Magnetic Liquids: A dynamic Mean-field Study , 2003, cond-mat/0306313.

[36]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[37]  J. Pappis,et al.  Magnetostriction and Permeability of Magnetite and Cobalt-Substituted Magnetite , 1955 .

[38]  Lee Makowski,et al.  Biological sensors based on Brownian relaxation of magnetic nanoparticles , 2004 .

[39]  P M Déjardin,et al.  Nonlinear susceptibilities of interacting polar molecules in the self-consistent field approximation. , 2014, The Journal of chemical physics.

[40]  Á. Delgado,et al.  Magnetic colloids as drug vehicles. , 2008, Journal of pharmaceutical sciences.

[41]  Orientational dynamics and dielectric response of nanopore water. , 2009, Physical review letters.

[42]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[43]  A. Demortière,et al.  Size-dependent properties of magnetic iron oxide nanocrystals. , 2011, Nanoscale.

[44]  C. Brazel Magnetothermally-responsive Nanomaterials: Combining Magnetic Nanostructures and Thermally-Sensitive Polymers for Triggered Drug Release , 2009, Pharmaceutical Research.

[45]  M. Ogawa,et al.  Synthesis and properties of ellipsoidal hematite/silicone core-shell particles , 2007 .

[46]  K. Morozov The dielectric virial expansion and the models of dipolar hard-sphere fluid. , 2007, The Journal of chemical physics.

[47]  Gang Bao,et al.  Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. , 2015, Nanoscale.

[48]  F. Sciortino,et al.  The influence of shape anisotropy on the microstructure of magnetic dipolar particles , 2013 .

[49]  A. Pshenichnikov,et al.  Magneto-granulometric analysis of concentrated ferrocolloids , 1996 .

[50]  I. Kretzschmar,et al.  Assembly behavior of iron oxide-capped Janus particles in a magnetic field. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[51]  R. Muller,et al.  Preparation of magnetic nanoparticles with large specific loss power for heating applications , 2005 .

[52]  Zhen Yao,et al.  Modeling the Brownian relaxation of nanoparticle ferrofluids: Comparison with experiment , 2013, 2013 International Workshop on Magnetic Particle Imaging (IWMPI).

[53]  S. Sacanna,et al.  Fluorescent monodisperse silica ellipsoids for optical rotational diffusion studies. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[54]  I. Kretzschmar,et al.  Behaviour of iron oxide (Fe3O4) Janus particles in overlapping external AC electric and static magnetic fields , 2013 .

[55]  Q. Pankhurst,et al.  Progress in applications of magnetic nanoparticles in biomedicine , 2009 .

[56]  A. Pshenichnikov A mutual-inductance bridge for analysis of magnetic fluids , 2007 .

[57]  Junghoon Lee,et al.  Spatial control of chromosomal location in a live cell with functionalized magnetic particles. , 2015, Nanoscale.

[58]  Yu-Hao Lin,et al.  Controlled manipulation of Fe₃O₄ nanoparticles in an oscillating magnetic field for fast ablation of microchannel occlusion. , 2015, Nanoscale.

[59]  Growth mechanism of nanostructured superparamagnetic rods obtained by electrostatic co-assembly , 2010 .

[60]  Kwong‐Yu Chan,et al.  The mean spherical approximation for a dipolar Yukawa fluid , 1999 .

[61]  M. Shliomis,et al.  Magnetic properties of ferrocolloids , 1990 .

[62]  Y. Raikher,et al.  Physical aspects of magnetic hyperthermia: Low-frequency ac field absorption in a magnetic colloid , 2014 .

[63]  D. Baldomir,et al.  The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects. , 2015, Physical chemistry chemical physics : PCCP.

[64]  X. Batlle,et al.  Superparamagnetic versus blocked states in aggregates of Fe(3-x)O₄ nanoparticles studied by MFM. , 2015, Nanoscale.

[65]  S. Klapp,et al.  Percolation and orientational ordering in systems of magnetic nanorods , 2012, 1203.4707.

[66]  G Steinbach,et al.  Bistable self-assembly in homogeneous colloidal systems for flexible modular architectures. , 2016, Soft matter.

[67]  D. Jaillard,et al.  Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. , 2005, Bioconjugate chemistry.

[68]  A. Ivanov,et al.  Revealing the signature of dipolar interactions in dynamic spectra of polydisperse magnetic nanoparticles. , 2016, Soft matter.

[69]  A. Ivanov,et al.  Magnetogranulometric analysis of ferrocolloids: Second-order modified mean field theory , 2006 .

[70]  C. Thomsen,et al.  Dynamics of the field-induced formation of hexagonal zipped-chain superstructures in magnetic colloids. , 2011, Physical review letters.

[71]  Y. Raikher,et al.  Nonlinear Dynamic Susceptibilities and Field‐Induced Birefringence in Magnetic Particle Assemblies , 2004 .

[72]  B. U. Felderhof,et al.  Mean field theory of the nonlinear response of an interacting dipolar system with rotational diffusion to an oscillating field , 2003 .

[73]  J. Dobson,et al.  Selective activation of mechanosensitive ion channels using magnetic particles , 2007, Journal of The Royal Society Interface.

[74]  M. Reißner,et al.  The effect of nanocrystalline silicon host on magnetic properties of encapsulated iron oxide nanoparticles. , 2015, Nanoscale.

[75]  C. Wilhelm,et al.  Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia? , 2015, Nanoscale.

[76]  F. Sciortino,et al.  Temperature-induced structural transitions in self-assembling magnetic nanocolloids. , 2015, Physical chemistry chemical physics : PCCP.

[77]  Stefan Odenbach,et al.  Ferrofluids: Magnetically Controllable Fluids And Their Applications , 2010 .

[78]  K. Krishnan Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy , 2010, IEEE Transactions on Magnetics.

[79]  A. Khlobystov,et al.  Biotechnological promises of Fe-filled CNTs for cell shepherding and magnetic fluid hyperthermia applications. , 2015, Nanoscale.

[80]  S. Kantorovich,et al.  Directional self-assembly of permanently magnetised nanocubes in quasi two dimensional layers. , 2015, Nanoscale.

[81]  A. Ivanov,et al.  Equilibrium properties of ferrocolloids , 1992 .

[82]  Lucke,et al.  Magnetization of ferrofluids with dipolar interactions: A born-mayer expansion , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[83]  M. Prins,et al.  Magnetization and actuation of polymeric microstructures with magnetic nanoparticles for application in microfluidics , 2009 .

[84]  C. Rinaldi,et al.  Monitoring gelation using magnetic nanoparticles , 2010 .

[85]  Werner A. Kaiser,et al.  Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia , 2004 .

[86]  K. Grzybowska,et al.  High pressure as a key factor to identify the conductivity mechanism in protic ionic liquids. , 2013, Physical review letters.

[87]  A. Ivanov,et al.  Thermodynamics of dipolar hard spheres with low-to-intermediate coupling constants. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  G. Landi,et al.  Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations , 2012 .

[89]  L. Bergström,et al.  Origin of the large dispersion of magnetic properties in nanostructured oxides: Fe(x)O/Fe3O4 nanoparticles as a case study. , 2015, Nanoscale.

[90]  Valerica Raicu,et al.  Dielectric relaxation in biological systems , 2015 .

[91]  G. Salviati,et al.  Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia. , 2015, Nanoscale.

[92]  F. Sciortino,et al.  Structural properties of the dipolar hard-sphere fluid at low temperatures and densities , 2012 .

[93]  K. O'Grady,et al.  A study of curie-weiss behaviour in ferrofluids , 1990 .

[94]  Himanshu Tyagi,et al.  Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. , 2015, Nanoscale.

[95]  Kannan M. Krishnan,et al.  Size-Dependent Relaxation Properties of Monodisperse Magnetite Nanoparticles Measured Over Seven Decades of Frequency by AC Susceptometry , 2013, IEEE Transactions on Magnetics.

[96]  R. Birringer,et al.  Magnetic-field-dependent optical transmission of nickel nanorod colloidal dispersions , 2009 .

[97]  A. Pshenichnikov Equilibrium magnetization of concentrated ferrocolloids , 1995 .

[98]  J. L. Vilas,et al.  Nonylphenol polyethoxylate coated body-center-cubic iron nanocrystals for ferrofluids with technical applications , 2013 .

[99]  A. Ivanov,et al.  Magnetic properties of dense ferrofluids: an influence of interparticle correlations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  Martin A. M. Gijs,et al.  Magnetic bead handling on-chip: new opportunities for analytical applications , 2004 .

[101]  B. Erné,et al.  Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel , 2013, International journal of molecular sciences.