Quantum Correlations and Number Theory
暂无分享,去创建一个
[1] Tanguy Rivoal. La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs , 2000 .
[2] Destri,et al. New thermodynamic Bethe ansatz equations without strings. , 1992, Physical review letters.
[3] Michio Jimbo,et al. Algebraic Analysis of Solvable Lattice Models. , 1994 .
[4] Takahashi. Correlation length and free energy of the S=1/2 XXZ chain in a magnetic field. , 1991, Physical review. B, Condensed matter.
[5] White,et al. Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.
[6] Emptiness Formation Probability for the One-Dimensional Isotropic XY Model , 2001, cond-mat/0106062.
[7] U.-J. Wiese,et al. A determination of the low energy parameters of the 2-d Heisenberg antiferromagnet , 1992 .
[8] Minoru Takahashi. One-Dimensional Heisenberg Model at Finite Temperature , 1971 .
[9] Correlation functions of the XXZ Heisenberg spin- chain in a magnetic field , 1999, math-ph/9907019.
[10] Determinant representation for correlation functions of spin-1/2 XXX and XXZ Heisenberg magnets , 1994, hep-th/9406133.
[11] T. Koma. Thermal Bethe-Ansatz Method for the Spin-1/2 XXZ Heisenberg Chain , 1989 .
[12] M. Jimbo,et al. Quantum KZ equation with |q| = 1 and correlation functions of the XXZ model in the gapless regime , 1996, hep-th/9601135.
[13] H. Bethe,et al. Zur Theorie der Metalle , 1931 .
[14] A. Goncharov,et al. Multiple polylogarithms and mixed Tate motives , 2001 .
[15] M. Inoue,et al. The ST-Transformation Approach to Analytic Solutions of Quantum Systems. I : General Formulations and Basic Limit Theorems , 1987 .
[16] Takahashi. Correlation length and free energy of the S=1/2 XYZ chain. , 1991, Physical review. B, Condensed matter.
[17] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[19] D. Zagier. Values of Zeta Functions and Their Applications , 1994 .
[20] H. Bethe. On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain , 1931 .
[21] M. Wadati,et al. A new approach to quantum spin chains at finite temperature , 1990 .
[22] B. B. Beard,et al. Simulations of Discrete Quantum Systems in Continuous Euclidean Time. , 1996 .
[23] Minoru Takahashi. Half-filled Hubbard model at low temperature , 1977 .
[24] M. Suzuki,et al. Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations , 1976 .
[25] Lana,et al. Cluster algorithm for vertex models. , 1993, Physical review letters.
[26] A. V. Razumov,et al. Spin chains and combinatorics , 2000 .
[27] A. Klümper. Free energy and correlation lengths of quantum chains related to restricted solid-on-solid lattice models† , 1992 .
[28] Integro-difference equation for a correlation function of the Heisenberg XXZ chain , 1995, cond-mat/9503142.
[29] Jun Murakami,et al. Kontsevich's integral for the Homfly polynomial and relations between values of multiple zeta functions , 1995 .
[30] H. E. Boos,et al. Quantum spin chains and Riemann zeta function with odd arguments , 2001 .
[31] Kawashima,et al. Loop algorithms for Monte Carlo simulations of quantum spin systems. , 1994, Physical review letters.
[32] T. Koma. Thermal Bethe-Ansatz Method for the One-Dimensional Heisenberg Model , 1987 .
[33] V. Korepin,et al. Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.
[34] Minoru Takahashi. Thermodynamics of One-Dimensional Solvable Models , 1999 .