Higher-Order Expansion and Bartlett Correctability of Distributionally Robust Optimization

Distributionally robust optimization (DRO) is a worst-case framework for stochastic optimization under uncertainty that has drawn fast-growing studies in recent years. When the underlying probability distribution is unknown and observed from data, DRO suggests to compute the worst-case distribution within a so-called uncertainty set that captures the involved statistical uncertainty. In particular, DRO with uncertainty set constructed as a statistical divergence neighborhood ball has been shown to provide a tool for constructing valid confidence intervals for nonparametric functionals, and bears a duality with the empirical likelihood (EL). In this paper, we show how adjusting the ball size of such type of DRO can reduce higher-order coverage errors similar to the Bartlett correction. Our correction, which applies to general von Mises differentiable functionals, is more general than the existing EL literature that only focuses on smooth function models or M -estimation. Moreover, we demonstrate a higher-order “selfnormalizing” property of DRO regardless of the choice of divergence. Our approach builds on the development of a higher-order expansion of DRO, which is obtained through an asymptotic analysis on a fixed point equation arising from the Karush-Kuhn-Tucker conditions. Keywords— Distributionally robust optimization, empirical likelihood, Bartlett correction, higher-order asymptotic, von Mises functionals, nonparametric inference

[1]  Andrew E. B. Lim,et al.  On the optimality of threshold control in queues with model uncertainty , 2010, Queueing Syst. Theory Appl..

[2]  Xi Chen,et al.  The Discrete Moment Problem with Nonconvex Shape Constraints , 2017, Oper. Res..

[3]  Alexander Shapiro,et al.  Lectures on Stochastic Programming - Modeling and Theory, Second Edition , 2014, MOS-SIAM Series on Optimization.

[4]  Viet Anh Nguyen,et al.  Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning , 2019, Operations Research & Management Science in the Age of Analytics.

[5]  Biao Zhang On the accuracy of empirical likelihood confidence intervals for M-Functionals , 1996 .

[6]  R. Tyrrell Rockafellar,et al.  Coherent Approaches to Risk in Optimization Under Uncertainty , 2007 .

[7]  P. Hall,et al.  On bootstrap resampling and iteration , 1988 .

[8]  M. KarthyekRajhaaA.,et al.  Robust Wasserstein profile inference and applications to machine learning , 2019, J. Appl. Probab..

[9]  Henry Lam,et al.  Recovering Best Statistical Guarantees via the Empirical Divergence-Based Distributionally Robust Optimization , 2016, Oper. Res..

[10]  Yannis Pantazis,et al.  Path-Space Information Bounds for Uncertainty Quantification and Sensitivity Analysis of Stochastic Dynamics , 2015, SIAM/ASA J. Uncertain. Quantification.

[11]  Ian R. Petersen,et al.  Minimax optimal control of stochastic uncertain systems with relative entropy constraints , 2000, IEEE Trans. Autom. Control..

[12]  Yang Kang,et al.  Sample Out-of-Sample Inference Based on Wasserstein Distance , 2016, Oper. Res..

[13]  Xi Chen,et al.  Wasserstein Distributionally Robust Optimization and Variation Regularization , 2017, Oper. Res..

[14]  Weijun Xie O C ] 2 2 A ug 2 01 9 Tractable Reformulations of Distributionally Robust Two-stage Stochastic Programs with ∞ − Wasserstein Distance , 2019 .

[15]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[16]  John Duchi,et al.  Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach , 2016, Math. Oper. Res..

[17]  M. Bartlett Properties of Sufficiency and Statistical Tests , 1992 .

[18]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[19]  Paul Dupuis,et al.  Robust Bounds on Risk-Sensitive Functionals via Rényi Divergence , 2013, SIAM/ASA J. Uncertain. Quantification.

[20]  Song Xi Chen,et al.  Empirical likelihood confidence intervals for local linear smoothers , 2000 .

[21]  Taisuke Otsu,et al.  On Bartlett Correctability of Empirical Likelihood in Generalized Power Divergence Family , 2011 .

[22]  Ioana Popescu,et al.  A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions , 2005, Math. Oper. Res..

[23]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[24]  Henry Lam,et al.  Tail Analysis Without Parametric Models: A Worst-Case Perspective , 2015, Oper. Res..

[25]  Garud Iyengar,et al.  Robust Dynamic Programming , 2005, Math. Oper. Res..

[26]  On the Order of Magnitude of Cumulants of Von Mises Functionals and Related Statistics , 1983 .

[27]  Karthyek R. A. Murthy,et al.  Confidence Regions in Wasserstein Distributionally Robust Estimation , 2019, Biometrika.

[28]  Henry Lam,et al.  Robust Sensitivity Analysis for Stochastic Systems , 2013, Math. Oper. Res..

[29]  Vishal Gupta,et al.  Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization , 2019, Manag. Sci..

[30]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[31]  Johanna L. Mathieu,et al.  Distributionally Robust Chance-Constrained Optimal Power Flow With Uncertain Renewables and Uncertain Reserves Provided by Loads , 2017, IEEE Transactions on Power Systems.

[32]  Keith A. Baggerly,et al.  Empirical likelihood as a goodness-of-fit measure , 1998 .

[33]  Art B. Owen,et al.  Empirical Likelihood Confidence Bands in Density Estimation , 1993 .

[34]  Andrew E. B. Lim,et al.  Model Uncertainty, Robust Optimization and Learning , 2006 .

[35]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[36]  Shie Mannor,et al.  Robustness and Regularization of Support Vector Machines , 2008, J. Mach. Learn. Res..

[37]  Alexander Shapiro,et al.  Optimization of Convex Risk Functions , 2006, Math. Oper. Res..

[38]  H. Callaert,et al.  An Edgeworth Expansion for $U$-Statistics , 1980 .

[39]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[40]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[41]  Vishal Gupta,et al.  Robust sample average approximation , 2014, Math. Program..

[42]  John C. Duchi,et al.  Certifiable Distributional Robustness with Principled Adversarial Training , 2017, ArXiv.

[43]  Andrew E. B. Lim,et al.  Calibration of Distributionally Robust Empirical Optimization Models , 2017, Oper. Res..

[44]  Daniel Kuhn,et al.  Regularization via Mass Transportation , 2017, J. Mach. Learn. Res..

[45]  Ruiwei Jiang,et al.  Distributionally Robust Contingency-Constrained Unit Commitment , 2018, IEEE Transactions on Power Systems.

[46]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[47]  Güzin Bayraksan,et al.  Data-Driven Stochastic Programming Using Phi-Divergences , 2015 .

[48]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[49]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[50]  Ioannis Ch. Paschalidis,et al.  A Robust Learning Approach for Regression Models Based on Distributionally Robust Optimization , 2018, J. Mach. Learn. Res..

[51]  J. Ghosh,et al.  ON THE VALIDITY OF THE FORMAL EDGEWORTH EXPANSION , 1978 .

[52]  L. Pardo Statistical Inference Based on Divergence Measures , 2005 .

[53]  Xiaobo Li,et al.  Robustness to Dependency in Portfolio Optimization Using Overlapping Marginals , 2015, Oper. Res..

[54]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[55]  A. .,et al.  SEMIPARAMETRIC LIKELIHOOD RATIO INFERENCE , 1996 .

[56]  Thomas J. DiCiccio,et al.  Empirical Likelihood is Bartlett-Correctable , 1991 .

[57]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[58]  A note on Edgeworth expansions for the von Mises functionals , 1988 .

[59]  Percy Liang,et al.  Fairness Without Demographics in Repeated Loss Minimization , 2018, ICML.

[60]  R. Beran Prepivoting to reduce level error of confidence sets , 1987 .

[61]  Stephen A. Corcoran,et al.  Bartlett adjustment of empirical discrepancy statistics , 1998 .

[62]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[63]  John C. Duchi,et al.  Learning Models with Uniform Performance via Distributionally Robust Optimization , 2018, ArXiv.

[64]  Tatsunori B. Hashimoto,et al.  Distributionally Robust Neural Networks , 2020, ICLR.

[65]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[66]  Herbert E. Scarf,et al.  A Min-Max Solution of an Inventory Problem , 1957 .

[67]  Henry Lam,et al.  The empirical likelihood approach to quantifying uncertainty in sample average approximation , 2017, Oper. Res. Lett..

[68]  Henry Lam,et al.  Sensitivity to Serial Dependency of Input Processes: A Robust Approach , 2016, Manag. Sci..

[69]  J. Blanchet,et al.  On distributionally robust extreme value analysis , 2016, 1601.06858.

[70]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[71]  P. Glasserman,et al.  Robust risk measurement and model risk , 2012 .

[72]  Zhaolin Hu,et al.  Kullback-Leibler divergence constrained distributionally robust optimization , 2012 .

[73]  C. Withers,et al.  Expansions for the Distribution and Quantiles of a Regular Functional of the Empirical Distribution with Applications to Nonparametric Confidence Intervals , 1983 .

[74]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[75]  John C. Duchi,et al.  Variance-based Regularization with Convex Objectives , 2016, NIPS.

[76]  Amin Saberi,et al.  INFORMS doi 10.1287/xxxx.0000.0000 c○0000 INFORMS Price of Correlations in Stochastic Optimization , 2022 .

[77]  Karthik Natarajan,et al.  Worst-Case Expected Shortfall with Univariate and Bivariate Marginals , 2017, INFORMS J. Comput..

[78]  Peter Hall,et al.  Smoothed empirical likelihood confidence intervals for quantiles , 1993 .

[79]  Daniel Kuhn,et al.  Generalized Gauss inequalities via semidefinite programming , 2015, Mathematical Programming.

[80]  John Duchi,et al.  Distributionally Robust Losses for Latent Covariate Mixtures , 2020, ArXiv.

[81]  Daniel Kuhn,et al.  Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations , 2015, Mathematical Programming.

[82]  Henry Lam,et al.  Quantifying uncertainty in sample average approximation , 2015, 2015 Winter Simulation Conference (WSC).

[83]  D. Lawley A GENERAL METHOD FOR APPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA , 1956 .

[84]  Andrew E. B. Lim,et al.  Robust Empirical Optimization is Almost the Same As Mean-Variance Optimization , 2015, Oper. Res. Lett..

[85]  Nils Lid Hjort,et al.  Extending the Scope of Empirical Likelihood , 2009, 0904.2949.

[86]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[87]  Peng Cui,et al.  Stable Adversarial Learning under Distributional Shifts , 2020, AAAI.

[88]  A. Kleywegt,et al.  Distributionally Robust Stochastic Optimization with Wasserstein Distance , 2016, Math. Oper. Res..

[89]  P. Hall On the Bootstrap and Confidence Intervals , 1986 .

[90]  Art B. Owen,et al.  Empirical Likelihood for Linear Models , 1991 .

[91]  Gang Li,et al.  On nonparametric likelihood ratio estimation of survival probabilities for censored data , 1995 .