Efficient Structured Learning for Personalized Diversification
暂无分享,去创建一个
[1] M. de Rijke,et al. Fusion helps diversification , 2014, SIGIR.
[2] Craig MacDonald,et al. Exploiting query reformulations for web search result diversification , 2010, WWW '10.
[3] Thorsten Joachims,et al. Online Structured Prediction via Coactive Learning , 2012, ICML.
[4] David M. Blei,et al. Syntactic Topic Models , 2008, NIPS.
[5] Jun Wang,et al. Adaptive diversification of recommendation results via latent factor portfolio , 2012, SIGIR '12.
[6] Wai Lam,et al. An unsupervised topic segmentation model incorporating word order , 2013, SIGIR.
[7] Filip Radlinski,et al. A support vector method for optimizing average precision , 2007, SIGIR.
[8] Wei Chu,et al. Personalized ranking model adaptation for web search , 2013, SIGIR.
[9] Qiaozhu Mei,et al. One theme in all views: modeling consensus topics in multiple contexts , 2013, KDD.
[10] Thorsten Joachims,et al. Predicting diverse subsets using structural SVMs , 2008, ICML '08.
[11] Padhraic Smyth,et al. Text-based measures of document diversity , 2013, KDD.
[12] Evangelos Kanoulas,et al. Dynamic Clustering of Streaming Short Documents , 2016, KDD.
[13] Steve Branson,et al. Efficient Large-Scale Structured Learning , 2013, CVPR.
[14] Charles L. A. Clarke,et al. Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.
[15] Ji-Rong Wen,et al. WWW 2007 / Track: Search Session: Personalization A Largescale Evaluation and Analysis of Personalized Search Strategies ABSTRACT , 2022 .
[16] Yong Yu,et al. Enhancing diversity, coverage and balance for summarization through structure learning , 2009, WWW '09.
[17] Jade Goldstein-Stewart,et al. The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.
[18] M. de Rijke,et al. Summarizing Contrastive Themes via Hierarchical Non-Parametric Processes , 2015, SIGIR.
[19] Jun S. Liu,et al. The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .
[20] Jade Goldstein-Stewart,et al. The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.
[21] David M. Blei,et al. Multilingual Topic Models for Unaligned Text , 2009, UAI.
[22] Pablo Castells,et al. Personalized diversification of search results , 2012, SIGIR '12.
[23] Nadia Magnenat-Thalmann,et al. Who, where, when and what: discover spatio-temporal topics for twitter users , 2013, KDD.
[24] Saul Vargas,et al. Explicit relevance models in intent-oriented information retrieval diversification , 2012, SIGIR '12.
[25] M. de Rijke,et al. Explainable User Clustering in Short Text Streams , 2016, SIGIR.
[26] W. Bruce Croft,et al. Diversity by proportionality: an election-based approach to search result diversification , 2012, SIGIR '12.
[27] Ellen M. Voorhees,et al. TREC 2014 Web Track Overview , 2015, TREC.
[28] Andrew McCallum,et al. Topics over time: a non-Markov continuous-time model of topical trends , 2006, KDD '06.
[29] M. de Rijke,et al. Click Models for Web Search , 2015, Click Models for Web Search.
[30] Nicholas J. Belkin,et al. Personalization of search results using interaction behaviors in search sessions , 2012, SIGIR '12.
[31] Stephen E. Robertson,et al. The TREC-8 Filtering Track Final Report , 1999, TREC.
[32] John D. Lafferty,et al. Beyond independent relevance: methods and evaluation metrics for subtopic retrieval , 2003, SIGIR.
[33] David R. Karger,et al. Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .
[34] John D. Lafferty,et al. A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.
[35] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[36] Jimmy J. Lin,et al. Overview of the TREC-2014 Microblog Track , 2014, TREC.
[37] Sreenivas Gollapudi,et al. Diversifying search results , 2009, WSDM '09.
[38] Thomas L. Griffiths,et al. The Author-Topic Model for Authors and Documents , 2004, UAI.
[39] Thomas Hofmann,et al. Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..
[40] Wei Chu,et al. Modeling the impact of short- and long-term behavior on search personalization , 2012, SIGIR '12.
[41] Pushmeet Kohli,et al. DivMCuts: Faster Training of Structural SVMs with Diverse M-Best Cutting-Planes , 2013, AISTATS.
[42] Joemon M. Jose,et al. Personalizing Web Search with Folksonomy-Based User and Document Profiles , 2010, ECIR.
[43] ChengXiang Zhai,et al. Implicit user modeling for personalized search , 2005, CIKM '05.
[44] M. de Rijke,et al. Formal language models for finding groups of experts , 2016, Inf. Process. Manag..
[45] M. de Rijke,et al. Personalized search result diversification via structured learning , 2014, KDD.
[46] Stephen E. Robertson,et al. Simple Evaluation Metrics for Diversified Search Results , 2010, EVIA@NTCIR.
[47] Mark J. F. Gales,et al. Structured SVMs for Automatic Speech Recognition , 2013, IEEE Transactions on Audio, Speech, and Language Processing.
[48] Bo Zhang,et al. Scalable inference in max-margin topic models , 2013, KDD.
[49] Ji-Rong Wen,et al. Incorporating Social Role Theory into Topic Models for Social Media Content Analysis , 2015, IEEE Transactions on Knowledge and Data Engineering.
[50] M. de Rijke,et al. Burst-aware data fusion for microblog search , 2015, Inf. Process. Manag..
[51] Filip Radlinski,et al. Improving personalized web search using result diversification , 2006, SIGIR.
[52] Samir Khuller,et al. The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..
[53] W. Bruce Croft,et al. Term level search result diversification , 2013, SIGIR.
[54] Xiaojie Yuan,et al. Evaluating the Effectiveness of Personalized Web Search , 2009, IEEE Transactions on Knowledge and Data Engineering.