Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008–2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.

A. Heijboer | I. Palma | A. Trovato | G. Anton | U. Katz | M. Tselengidou | H. Glotin | S. Basa | P. Gay | A. Capone | Y. Hello | A. Deschamps | J. Carr | P. Coyle | B. Vallage | M. Circella | A. Coleiro | D. Dornic | V. Kulikovskiy | B. Baret | S. Hallmann | G. Riccobene | D. Lefèvre | J. Brunner | V. Bertin | L. Caramete | J. Hernández-Rey | C. Racca | R. Lahmann | S. Loucatos | A. Marinelli | A. Mathieu | S. Biagi | R. Bruijn | A. Albert | J. Aubert | M. Bouwhuis | R. Coniglione | C. Distefano | K. Graf | A. Kouchner | M. Marcelin | A. Margiotta | E. Nezri | P. Piattelli | V. Popa | T. Pradier | P. Sapienza | M. Spurio | T. Stolarczyk | M. Taiuti | J. Zornoza | G. Bonis | T. Chiarusi | K. Geyer | F. Schüssler | E. Leonora | V. Elewyck | G. Pǎvǎlaş | M. Kadler | H. Costantini | J. Busto | T. Eberl | I. Kreykenbohm | J. Martínez-Mora | K. Roensch | M. Ardid | J. Wilms | O. Kalekin | C. Donzaud | H. Haren | S. Wagner | V. Giordano | T. Seitz | D. Samtleben | A. Enzenhöfer | A. Creusot | D. Drouhin | A. Gleixner | P. Migliozzi | J. Schnabel | D. Vivolo | T. Avgitas | R. Bormuth | S. Celli | D. Elsässer | I. Felis | L. Fusco | S. Galata | S. Geißelsöder | R. Gracia-Ruiz | J. Hofestädt | C. Hugon | G. Illuminati | C. James | M. de Jong | M. Jongen | D. Kiessling | M. Kreter | C. Lachaud | K. Melis | T. Michael | A. Moussa | C. Mueller | C. Pellegrino | C. Perrina | M. Saldaña | M. Sanguineti | C. Sieger | D. Turpin | C. Tönnis | J. Z'uniga | I. Bojaddaini | M. Andr'e | J. Barrios-Mart'i | A. S'anchez-Losa | C. Vall'ee | J. Hössl

[1]  Brigitte,et al.  2013 , 2018, Speaking of Duke.

[2]  P. Favali,et al.  Letter of intent for KM3NeT 2.0 , 2016, 1601.07459.

[3]  G. E. Romero,et al.  Lepto-hadronic model for the broadband emission of Cygnus X-1 , 2015, 1509.08514.

[4]  A. Heijboer,et al.  Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope , 2015, 1506.07354.

[5]  W. Brandt,et al.  LORD OF THE RINGS: A KINEMATIC DISTANCE TO CIRCINUS X-1 FROM A GIANT X-RAY LIGHT ECHO , 2015, 1506.06142.

[6]  J. P. Rodrigues,et al.  SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012 , 2015, 1503.00598.

[7]  The ANTARES collaboration Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope , 2015 .

[8]  J. Vergados,et al.  Direct dark matter searches—Test of the Big Bounce Cosmology , 2014, 1410.5710.

[9]  D. Aguilera,et al.  Exploring jet-launching conditions for supergiant fast X-ray transients , 2014 .

[10]  G. E. Romero,et al.  Exploring jet-launching conditions for SFXTs , 2014, 1404.7243.

[11]  A. Heijboer,et al.  A search for time dependent neutrino emission from microquasars with the ANTARES telescope , 2014, 1402.1600.

[12]  S. Migliari,et al.  Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47 , 2013, Nature.

[13]  N. Sahakyan,et al.  HADRONIC GAMMA-RAY AND NEUTRINO EMISSION FROM CYGNUS X-3 , 2013, 1310.7805.

[14]  Guillaume Dubus,et al.  Gamma-ray binaries and related systems , 2013, 1307.7083.

[15]  A. Heijboer,et al.  Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data , 2013, 1307.0304.

[16]  C. Kouveliotou,et al.  VLBI observations of the shortest orbital period black hole binary, MAXI J1659-152 , 2013, 1303.6901.

[17]  P. Gandhi,et al.  Jet spectral breaks in black hole X-ray binaries , 2012, 1211.1655.

[18]  J. Chiang,et al.  STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS , 2012, 1207.5578.

[19]  G. E. Romero,et al.  Nonthermal processes and neutrino emission from the black hole GRO J0422+32 in a bursting state , 2012, 1209.0854.

[20]  A. Heijboer,et al.  SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE , 2012, 1207.3105.

[21]  G. E. Romero,et al.  Particle transport in magnetized media around black holes and associated radiation , 2012, 1204.4469.

[22]  G. E. Romero,et al.  An inhomogeneous lepto-hadronic model for the radiation of relativistic jets: Application to XTE J1118+480 , 2011, 1112.2560.

[23]  J. R. Hubbard,et al.  ANTARES: the first undersea neutrino telescope , 2011 .

[24]  T. Grav,et al.  NEOWISE STUDIES OF ASTEROIDS WITH SLOAN PHOTOMETRY: PRELIMINARY RESULTS , 2011, 1110.4998.

[25]  HartRAO,et al.  The first resolved imaging of milliarcsecond-scale jets in Circinus X-1 , 2011, 1110.3996.

[26]  G. Nelemans,et al.  A DEEP RADIO SURVEY OF HARD STATE AND QUIESCENT BLACK HOLE X-RAY BINARIES , 2011, 1106.0097.

[27]  A. Collaboration ANTARES: The first undersea neutrino telescope , 2011, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[28]  Jianfu Zhang,et al.  High-energy neutrino emission from low-mass microquasars , 2010 .

[29]  G. E. Romero,et al.  Non-thermal processes around accreting galactic black holes , 2010, 1006.5005.

[30]  A. Heijboer,et al.  Search for a diffuse flux of high-energy νμ with the ANTARES neutrino telescope , 2010, 1011.3772.

[31]  G. Vila,et al.  Leptonic/hadronic models for electromagnetic emission in microquasars: the case of GX 339-4 , 2010, 1001.0959.

[32]  M. Trifoglio,et al.  Extreme particle acceleration in the microquasar Cygnus X-3 , 2009, Nature.

[33]  W. Bednarek TeV neutrinos from accreting X-ray pulsars , 2009, 0906.0084.

[34]  N. Masetti,et al.  DISSECTING THE REGION OF 3EG J1837–0423 AND HESS J1841–055 WITH INTEGRAL , 2009, 0903.1763.

[35]  M. Ribordy,et al.  Neutrino signal from gamma-ray loud binaries powered by high energy protons , 2009 .

[36]  G. E. Romero,et al.  Magnetic field effects on neutrino production in microquasars , 2008, 0811.1383.

[37]  Gustavo E. Romero,et al.  The proton low-mass microquasar: high-energy emission , 2008, 0804.4606.

[38]  G. E. Romero,et al.  Production of gamma rays and neutrinos in the dark jets of the microquasar SS433 , 2008, 0801.2903.

[39]  F. Halzen,et al.  LS I +61 303 as a potential neutrino source on the light of magic results , 2006, astro-ph/0607368.

[40]  Landessternwarte,et al.  Potential Neutrino Signals from Galactic Gamma-Ray Sources , 2006, astro-ph/0607286.

[41]  A. Kappes,et al.  Potential Neutrino Signals from Galactic γ-Ray Sources , 2006 .

[42]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[43]  Caltech,et al.  Opening angles, Lorentz factors and confinement of X-ray binary jets , 2006, astro-ph/0601482.

[44]  G. E. Romero,et al.  High-energy neutrino emission from x-ray binaries , 2005, astro-ph/0509214.

[45]  S. Heinz Composition, Collimation, Contamination: The Jet of Cygnus X-1 , 2005, astro-ph/0509777.

[46]  W. Bednarek TeV Neutrinos from Microquasars in Compact Massive Binaries , 2005, astro-ph/0505547.

[47]  P. Kaaret,et al.  Discovery of X-Ray Jets in the Microquasar H1743–322 , 2005, astro-ph/0505526.

[48]  G. E. Romero,et al.  Hadronic gamma-ray emission from windy microquasars , 2003, astro-ph/0309123.

[49]  L. Anchordoqui,et al.  Neutrinos from Accreting Neutron Stars , 2002, hep-ph/0211231.

[50]  S. Migliari,et al.  Iron Emission Lines from Extended X-ray Jets in SS 433: Reheating of Atomic Nuclei , 2002, Science.

[51]  E. Waxman,et al.  Neutrino Flux Predictions for Known Galactic Microquasars , 2002, astro-ph/0202200.

[52]  A. Stirling,et al.  A relativistic jet from Cygnus X-1 in the low/hard X-ray state , 2001, astro-ph/0107192.

[53]  E. Waxman,et al.  Probing microquasars with TeV neutrinos. , 2001, Physical review letters.

[54]  R. K. Jain,et al.  X-Ray States and Radio Emission in the Black Hole Candidate XTE J1550–564 , 2001, astro-ph/0102114.

[55]  J. Scargle Studies in Astronomical Time Series Analysis. V. Bayesian Blocks, a New Method to Analyze Structure in Photon Counting Data , 1997, astro-ph/9711233.

[56]  I. Mirabel,et al.  A superluminal source in the Galaxy , 1994, Nature.

[57]  F. Giovannelli,et al.  A 0535 + 26/HDE 245770: A typical X-ray/Be system , 1992 .

[58]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[59]  J. Scargle Studies in astronomical time series analysis. I - Modeling random processes in the time domain , 1981 .

[60]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[61]  J. Neyman Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability , 1937 .

[62]  RD(翻译) Composition , 1885, Elementarbuch der Sanskrit-Sprache.