Finite-time estimator with enhanced robustness and transient performance applied to adaptive problems

In this paper, a dynamic regressor extension and mixed estimator is proposed with finite-time convergence and freedom to choose its time-varying adaptation gain and its derivation order. This freedom is exploited to enhance the transient and robustness performance of the estimation by analytically establishing the effects of both variables. The proposed estimator is used to design adaptive controllers and observers for nonlinear systems, which exhibit exponential order of convergence at an arbitrary rate of decay with robust and improved transient properties. These results are illustrated in a tracking control of nonlinear systems with parametric uncertainty.

[1]  Youxian Sun,et al.  Adaptive neural control of high-order uncertain nonaffine systems: A transformation to affine systems approach , 2014, Autom..

[2]  Daniel E. Miller,et al.  Periodic adaptive stabilization of rapidly time-varying linear systems , 2019, Math. Control. Signals Syst..

[3]  Manuel A. Duarte-Mermoud,et al.  Mixed order robust adaptive control for general linear time invariant systems , 2018, J. Frankl. Inst..

[4]  P. Kokotovic,et al.  Adaptive nonlinear design with controller-identifier separation and swapping , 1995, IEEE Trans. Autom. Control..

[5]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[6]  Anup Parikh,et al.  Integral concurrent learning: Adaptive control with parameter convergence using finite excitation , 2015, International Journal of Adaptive Control and Signal Processing.

[7]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[8]  Antonios Tsourdos,et al.  Composite Model Reference Adaptive Control with Parameter Convergence Under Finite Excitation , 2018, IEEE Transactions on Automatic Control.

[9]  Gang Tao,et al.  Adaptive Control Design and Analysis , 2003 .

[10]  Alessandro Astolfi,et al.  New Results on Parameter Estimation via Dynamic Regressor Extension and Mixing: Continuous and Discrete-Time Cases , 2019, IEEE Transactions on Automatic Control.

[11]  S. Sastry,et al.  Indirect Techniques for Adaptive Input Output Linearization of Nonlinear Systems , 1990, 1990 American Control Conference.

[12]  A. Guez,et al.  Auto-tuning of parameters in estimation and adaptive control of robots with weaker PE conditions , 1997, IEEE Trans. Autom. Control..

[13]  Yongduan Song,et al.  Adaptive Control With Exponential Regulation in the Absence of Persistent Excitation , 2017, IEEE Transactions on Automatic Control.

[14]  Romeo Ortega,et al.  Adaptive Control of Multivariable Systems with Reduced Knowledge of High Frequency Gain: Application of Dynamic Regressor Extension and Mixing Estimators , 2018 .

[15]  Romeo Ortega,et al.  Robustness of adaptive controllers - A survey , 1989, Autom..

[16]  Z. Ding Global adaptive output feedback stabilization of nonlinear systems of any relative degree with unknown high-frequency gains , 1998, IEEE Trans. Autom. Control..

[17]  I. Kanellakopoulos,et al.  Nonlinearities enhance parameter convergence in output-feedback systems , 1998, IEEE Trans. Autom. Control..

[18]  Martin Guay,et al.  Finite-time Parameter Estimation in Adaptive Control of Nonlinear Systems , 2008, 2007 American Control Conference.

[19]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[20]  M. Duarte-Mermoud,et al.  Converse theorems in Lyapunov’s second method and applications for fractional order systems , 2019, TURKISH JOURNAL OF MATHEMATICS.

[21]  Iasson Karafyllis,et al.  Adaptive Control by Regulation-Triggered Batch Least Squares , 2018, IEEE Transactions on Automatic Control.

[22]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[23]  Nikita Barabanov,et al.  Adaptive control of linear multivariable systems using dynamic regressor extension and mixing estimators: Removing the high-frequency gain assumptions , 2019, Autom..

[24]  R. Marino,et al.  Global adaptive output-feedback control of nonlinear systems. I. Linear parameterization , 1993, IEEE Trans. Autom. Control..

[25]  Manuel A. Duarte-Mermoud,et al.  On the Lyapunov theory for fractional order systems , 2016, Appl. Math. Comput..

[26]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .