One Can Hear the Composition of a String: Experiments with an Inverse Eigenvalue Problem

To what extent do the vibrations of a mechanical system reveal its composition? Despite innumerable applications and mathematical elegance, this question often slips through those cracks that separate courses in mechanics, differential equations, and linear algebra. We address this omission by detailing a classical finite dimensional example: the use of frequencies of vibration to recover positions and masses of beads vibrating on a string. First we derive the equations of motion, then compare the eigenvalues of the resulting linearized model against vibration data measured from our laboratory's monochord. More challenging is the recovery of masses and positions of the beads from spectral data, a problem for which a variety of elegant algorithms exist. After presenting one such method based on orthogonal polynomials in a manner suitable for advanced undergraduates, we confirm its efficacy through physical experiment. We encourage readers to conduct their own explorations using the numerous data sets we provide.

[1]  T. Sekii,et al.  Inverse problem of solar oscillations , 1987 .

[2]  Göran Borg Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .

[3]  Hai-Ping Lin,et al.  Direct and inverse methods on free vibration analysis of simply supported beams with a crack , 2004 .

[4]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[5]  G. Golub,et al.  Matrices, Moments and Quadrature with Applications , 2009 .

[6]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[7]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[8]  Harry Dym,et al.  Gaussian processes, function theory, and the inverse spectral problem , 1976 .

[9]  Sigalia Dostrovsky,et al.  The Evolution of Dynamics: Vibration Theory from 1687 to 1742 , 1981 .

[10]  William L. Briggs,et al.  The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .

[11]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[12]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[13]  G. M. L. Gladwell,et al.  Inverse Problems in Vibration , 1986 .

[14]  B. Gopinath,et al.  Determination of the shape of the human vocal tract from acoustical measurements , 1970, Bell Syst. Tech. J..

[15]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[16]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[17]  H. P. McKean,et al.  The inverse Sturm–Liouville problem. II , 1984 .

[18]  Gene H. Golub,et al.  The numerically stable reconstruction of a Jacobi matrix from spectral data , 1977, Milestones in Matrix Computation.

[19]  Olga Boyko,et al.  The inverse three-spectral problem for a Stieltjes string and the inverse problem with one-dimensional damping , 2008 .

[20]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[21]  Attalla Atia,et al.  Inverse eigenvalue problems : theory and algorithms. , 1998 .

[22]  Stuart S. Antman,et al.  The Simple Pendulum is not so Simple , 1998, SIAM Rev..

[23]  N. Levinson,et al.  The Inverse Sturm-Liouville Problem , 1998 .

[24]  B. Gutkin,et al.  Can one hear the shape of a graph , 2001, nlin/0105020.

[25]  E. Süli,et al.  An introduction to numerical analysis , 2003 .

[26]  G. Golub,et al.  Inverse Eigenvalue Problems: Theory, Algorithms, and Applications , 2005 .

[27]  Leonhard Euler,et al.  The rational mechanics of flexible or elastic bodies, 1638-1788 : introduction to Leonhardi Euleri Opera omnia, vol. X et XI seriei secundae , 2014 .

[28]  B. J. Gómez,et al.  Oscillations of a string with concentrated masses , 2007 .

[29]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .