Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas

[1]  W. Marsden I and J , 2012 .

[2]  Immanuel Bloch,et al.  Single-spin addressing in an atomic Mott insulator , 2011, Nature.

[3]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[4]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[5]  I. Bloch,et al.  Many-body Landau–Zener dynamics in coupled one-dimensional Bose liquids , 2010, 1003.4956.

[6]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[7]  S. Will,et al.  Time-resolved observation of coherent multi-body interactions in quantum phase revivals , 2010, Nature.

[8]  J. Eisert,et al.  A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states , 2009, 0911.2475.

[9]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[10]  J. Eisert,et al.  Probing local relaxation of cold atoms in optical superlattices , 2008, 0808.3779.

[11]  M. Hastings,et al.  Synchronization and Dephasing of Many-Body States in Optical Lattices , 2008, 0806.4283.

[12]  J. Eisert,et al.  Exploring local quantum many-body relaxation by atoms in optical superlattices. , 2008, Physical review letters.

[13]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[14]  J. Eisert,et al.  Exact relaxation in a class of nonequilibrium quantum lattice systems. , 2007, Physical review letters.

[15]  T. Müller,et al.  Direct observation of second-order atom tunnelling , 2007, Nature.

[16]  J. Schmiedmayer,et al.  Non-equilibrium coherence dynamics in one-dimensional Bose gases. , 2007, Nature.

[17]  P. Lee,et al.  Preparing and probing atomic number states with an atom interferometer. , 2007, Physical review letters.

[18]  M. Lewenstein,et al.  Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond , 2006, cond-mat/0606771.

[19]  T. Osborne Efficient approximation of the dynamics of one-dimensional quantum spin systems. , 2006, Physical review letters.

[20]  S. Sarma,et al.  Manipulation of single neutral atoms in optical lattices (5 pages) , 2006, quant-ph/0605245.

[21]  D. Stamper-Kurn,et al.  Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate , 2006, Nature.

[22]  S. Rolston,et al.  A lattice of double wells for manipulating pairs of cold atoms. , 2006, cond-mat/0602103.

[23]  M. Kasevich,et al.  Nonequilibrium coherence dynamics of a soft boson lattice , 2005, cond-mat/0504762.

[24]  J. Cardy,et al.  Evolution of entanglement entropy in one-dimensional systems , 2005, cond-mat/0503393.

[25]  P. Zoller,et al.  The cold atom Hubbard toolbox , 2004, cond-mat/0410614.

[26]  S. Rolston,et al.  Strongly inhibited transport of a degenerate 1D Bose gas in a lattice. , 2004, Physical review letters.

[27]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[28]  Ashish V. Thapliyal,et al.  Another way to approach zero entropy for a finite system of atoms , 2004 .

[29]  B. King,et al.  Patterned loading of a Bose-Einstein condensate into an optical lattice , 2003 .

[30]  T. Hänsch,et al.  Collapse and revival of the matter wave field of a Bose–Einstein condensate , 2002, Nature.

[31]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[32]  P. Morse Annals of Physics , 1957, Nature.