Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas
暂无分享,去创建一个
J. Eisert | I. McCulloch | U. Schollwock | I. Bloch | U. Schollwöck | S. Trotzky | Yu-Ao Chen | A. Flesch | Y.-A. Chen
[1] W. Marsden. I and J , 2012 .
[2] Immanuel Bloch,et al. Single-spin addressing in an atomic Mott insulator , 2011, Nature.
[3] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[4] Alessandro Silva,et al. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.
[5] I. Bloch,et al. Many-body Landau–Zener dynamics in coupled one-dimensional Bose liquids , 2010, 1003.4956.
[6] Immanuel Bloch,et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.
[7] S. Will,et al. Time-resolved observation of coherent multi-body interactions in quantum phase revivals , 2010, Nature.
[8] J. Eisert,et al. A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states , 2009, 0911.2475.
[9] Markus Greiner,et al. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.
[10] J. Eisert,et al. Probing local relaxation of cold atoms in optical superlattices , 2008, 0808.3779.
[11] M. Hastings,et al. Synchronization and Dephasing of Many-Body States in Optical Lattices , 2008, 0806.4283.
[12] J. Eisert,et al. Exploring local quantum many-body relaxation by atoms in optical superlattices. , 2008, Physical review letters.
[13] J. Dalibard,et al. Many-Body Physics with Ultracold Gases , 2007, 0704.3011.
[14] J. Eisert,et al. Exact relaxation in a class of nonequilibrium quantum lattice systems. , 2007, Physical review letters.
[15] T. Müller,et al. Direct observation of second-order atom tunnelling , 2007, Nature.
[16] J. Schmiedmayer,et al. Non-equilibrium coherence dynamics in one-dimensional Bose gases. , 2007, Nature.
[17] P. Lee,et al. Preparing and probing atomic number states with an atom interferometer. , 2007, Physical review letters.
[18] M. Lewenstein,et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond , 2006, cond-mat/0606771.
[19] T. Osborne. Efficient approximation of the dynamics of one-dimensional quantum spin systems. , 2006, Physical review letters.
[20] S. Sarma,et al. Manipulation of single neutral atoms in optical lattices (5 pages) , 2006, quant-ph/0605245.
[21] D. Stamper-Kurn,et al. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate , 2006, Nature.
[22] S. Rolston,et al. A lattice of double wells for manipulating pairs of cold atoms. , 2006, cond-mat/0602103.
[23] M. Kasevich,et al. Nonequilibrium coherence dynamics of a soft boson lattice , 2005, cond-mat/0504762.
[24] J. Cardy,et al. Evolution of entanglement entropy in one-dimensional systems , 2005, cond-mat/0503393.
[25] P. Zoller,et al. The cold atom Hubbard toolbox , 2004, cond-mat/0410614.
[26] S. Rolston,et al. Strongly inhibited transport of a degenerate 1D Bose gas in a lattice. , 2004, Physical review letters.
[27] U. Schollwoeck. The density-matrix renormalization group , 2004, cond-mat/0409292.
[28] Ashish V. Thapliyal,et al. Another way to approach zero entropy for a finite system of atoms , 2004 .
[29] B. King,et al. Patterned loading of a Bose-Einstein condensate into an optical lattice , 2003 .
[30] T. Hänsch,et al. Collapse and revival of the matter wave field of a Bose–Einstein condensate , 2002, Nature.
[31] C. Gardiner,et al. Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.
[32] P. Morse. Annals of Physics , 1957, Nature.