Conditions at the magnetopause of Saturn and implications for the solar wind interaction

Using idealized models of the magnetosheath and magnetospheric magnetic fields, plasma densities, and plasma flow, we test for the steady state viability of processes mediating the interaction between the solar wind and the magnetosphere of Saturn. The magnetopause is modeled as an asymmetric paraboloid with a standoff distance of ∼25 RS. We test where on the magnetopause surface large‒scale reconnection may be affected by either a shear flow or diamagnetic drift due to a pressure gradient across the magnetopause boundary. We also test for the onset of the Kelvin‒Helmholtz instability. We find that, for the solar wind and magnetosphere states considered, reconnection is inhibited on the dawn flank due to the large shear flows in this region. Additionally, most of the dawn and dusk equatorial region of the magnetopause is Kelvin‒Helmholtz unstable, due to the presence of the dense magnetospheric plasma sheet and weak magnetic fields on either side of the magnetopause. This study is a follow‒up to a previously published study of the solar wind interaction with Jupiter's magnetosphere.

[1]  Peter A. Delamere,et al.  Magnetic signatures of Kelvin‐Helmholtz vortices on Saturn's magnetopause: Global survey , 2012 .

[2]  F. Bagenal,et al.  Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction , 2012 .

[3]  Christopher T. Russell,et al.  Reconnection at the magnetopause of Saturn: Perspective from FTE occurrence and magnetosphere size , 2012 .

[4]  S. M. Krimigis,et al.  The importance of plasma β conditions for magnetic reconnection at Saturn's magnetopause , 2012 .

[5]  R. Wilson,et al.  Kelvin-Helmholtz instability at Saturn's magnetopause: Cassini ion data analysis , 2012 .

[6]  C. Farrugia,et al.  Accelerated magnetosheath flows caused by IMF draping: Dependence on latitude , 2012 .

[7]  R. Wilson,et al.  Kelvin‐Helmholtz instability at Saturn's magnetopause: Hybrid simulations , 2011 .

[8]  P. Cassak,et al.  Scaling of the magnetic reconnection rate with symmetric shear flow , 2011 .

[9]  M. Dougherty,et al.  Saturn's low‐latitude boundary layer: 1. Properties and variability , 2011 .

[10]  F. Bagenal,et al.  Flow of mass and energy in the magnetospheres of Jupiter and Saturn , 2011 .

[11]  C. Jackman,et al.  Solar Cycle Effects on the Dynamics of Jupiter’s and Saturn’s Magnetospheres , 2011 .

[12]  C. Farrugia,et al.  On accelerated magnetosheath flows under northward IMF , 2011 .

[13]  Robert L. Tokar,et al.  Survey of ion plasma parameters in Saturn's magnetosphere , 2010 .

[14]  Marc Davis,et al.  THE DEPENDENCE OF MAGNETIC RECONNECTION ON PLASMA β AND MAGNETIC SHEAR: EVIDENCE FROM SOLAR WIND OBSERVATIONS , 2010 .

[15]  R. Wilson,et al.  Nature of the ring current in Saturn's dayside magnetosphere , 2010 .

[16]  M. Kivelson,et al.  Cassini observations of a Kelvin-Helmholtz vortex in Saturn's outer magnetosphere , 2010 .

[17]  S. Krimigis,et al.  A new form of Saturn's magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements , 2010 .

[18]  J. Drake,et al.  THE VECTOR DIRECTION OF THE INTERSTELLAR MAGNETIC FIELD OUTSIDE THE HELIOSPHERE , 2010, 1001.0589.

[19]  N. Achilleos,et al.  The variability of Titan's magnetic environment , 2009 .

[20]  Edmond C. Roelof,et al.  Energetic particle pressure in Saturn's magnetosphere measured with the Magnetospheric Imaging Instrument on Cassini , 2009 .

[21]  Peter A. Delamere,et al.  Hybrid code simulations of the solar wind interaction with Pluto , 2008 .

[22]  M. Cattaneo,et al.  Occurrence of reconnection jets at the dayside magnetopause: Double Star observations , 2008 .

[23]  Michelle F. Thomsen,et al.  Evidence for reconnection at Saturn's magnetopause , 2008 .

[24]  Christopher T. Russell,et al.  Modeling the size and shape of Saturn's magnetopause with variable dynamic pressure , 2006 .

[25]  C. Russell,et al.  Orientation, location, and velocity of Saturn's bow shock: Initial results from the Cassini spacecraft , 2006 .

[26]  K. Khurana,et al.  Global structure of Jupiter's magnetospheric current sheet , 2005 .

[27]  Edward J. Smith,et al.  Interplanetary magnetic field at ∼9 AU during the declining phase of the solar cycle and its implications for Saturn's magnetospheric dynamics , 2004 .

[28]  Edmond C. Roelof,et al.  Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere , 2004 .

[29]  H. Hasegawa,et al.  Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin–Helmholtz vortices , 2004, Nature.

[30]  M. Shay,et al.  Diamagnetic suppression of component magnetic reconnection at the magnetopause , 2003, physics/0305021.

[31]  Christopher T. Russell,et al.  Probabilistic models of the Jovian magnetopause and bow shock locations , 2002 .

[32]  K. Khurana,et al.  Observations of thermal plasmas in Jupiter's magnetotail , 2002 .

[33]  P. Delamere,et al.  A three‐dimensional hybrid code simulation of the December 1984 solar wind AMPTE release , 1999 .

[34]  Christopher T. Russell,et al.  Location and shape of the Jovian magnetopause and bow shock , 1998 .

[35]  C. Farrugia,et al.  The effect of the magnetopause shapes of Jupiter and Saturn on magnetosheath parameters , 1998 .

[36]  Krishan K. Khurana,et al.  Euler potential models of Jupiter's magnetospheric field , 1997 .

[37]  C. Farrugia,et al.  Effects on the Jovian magnetosheath arising from solar wind flow around nonaxisymmetric bodies , 1996 .

[38]  J. Slavin,et al.  A three dimensional gasdynamic model for solar wind flow past nonaxisymmetric magnetospheres: Application to Jupiter and Saturn , 1989 .

[39]  Edward J. Smith,et al.  Solar wind flow about the outer planets - Gas dynamic modeling of the Jupiter and Saturn bow shocks , 1985 .

[40]  I. Engle,et al.  Idealized Jovian magnetosphere shape and field , 1980 .

[41]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .

[42]  ’. Otto Kelvin-Helmholtz Instability at the Magnetotail Boundary: MHD Simulation and Comparison with Geotail Observations , 2022 .