Optimization on linear matrix inequalities for polynomial systems control

Many problems of systems control theory boil down to solving polynomial equations, polynomial inequalities or polyomial differential equations. Recent advances in convex optimization and real algebraic geometry can be combined to generate approximate solutions in floating point arithmetic. In the first part of the course we describe semidefinite programming (SDP) as an extension of linear programming (LP) to the cone of positive semidefinite matrices. We investigate the geometry of spectrahedra, convex sets defined by linear matrix inequalities (LMIs) or affine sections of the SDP cone. We also introduce spectrahedral shadows, or lifted LMIs, obtained by projecting affine sections of the SDP cones. Then we review existing numerical algorithms for solving SDP problems. In the second part of the course we describe several recent applications of SDP. First, we explain how to solve polynomial optimization problems, where a real multivariate polynomial must be optimized over a (possibly nonconvex) basic semialgebraic set. Second, we extend these techniques to ordinary differential equations (ODEs) with polynomial dynamics, and the problem of trajectory optimization (analysis of stability or performance of solutions of ODEs). Third, we conclude this part with applications to optimal control (design of a trajectory optimal w.r.t. a given functional). For some of these decision and optimization problems, it is hoped that the numerical solutions computed by SDP can be refined a posteriori and certified rigorously with appropriate techniques.

[1]  R. V. Gamkrelidze,et al.  Principles of optimal control theory , 1977 .

[2]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[3]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[4]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[5]  Raul E. Curto,et al.  Truncated K-moment problems in several variables , 2005 .

[6]  T. Carleman Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires , 1932 .

[7]  J. Lasserre,et al.  Solving nonconvex optimization problems , 2004, IEEE Control Systems.

[8]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[9]  Luca Zaccarian,et al.  Design of Marx generators as a structured eigenvalue assignment , 2013, Autom..

[10]  W. Steeb,et al.  Nonlinear dynamical systems and Carleman linearization , 1991 .

[11]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[12]  P. Pedregal Parametrized measures and variational principles , 1997 .

[13]  Kellen Petersen August Real Analysis , 2009 .

[14]  A. F. Filippov Classical Solutions of Differential Equations with Multi-Valued Right-Hand Side , 1967 .

[15]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[16]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[17]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[18]  Anders Rantzer,et al.  Convex Programs for Temporal Verification of Nonlinear Dynamical Systems , 2007, SIAM J. Control. Optim..

[19]  C. Villani Topics in Optimal Transportation , 2003 .

[20]  J. Liouville,et al.  Note sur la Théorie de la Variation des constantes arbitraires. , 1838 .

[21]  Lihong Zhi,et al.  Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions , 2010, SIAM J. Optim..

[22]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[23]  B. Craven Control and optimization , 2019, Mathematical Modelling of the Human Cardiovascular System.

[24]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[25]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[26]  James Renegar,et al.  Hyperbolic Programs, and Their Derivative Relaxations , 2006, Found. Comput. Math..

[27]  Emmanuel Trélat,et al.  Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations , 2007, SIAM J. Control. Optim..

[28]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .

[29]  Didier Henrion,et al.  How GloptiPoly is applied to problems in robust and nonlinear control , 2004 .

[30]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[31]  Bernd Sturmfels,et al.  The algebraic degree of semidefinite programming , 2010, Math. Program..

[32]  L. G. van Willigenburg,et al.  Control and Optimization , 2006 .

[33]  A. Nemirovski Advances in convex optimization : conic programming , 2005 .

[34]  Heinrich Rubens,et al.  Revue générale des Sciences pures et appliquées , 1891 .

[35]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[36]  A. Rantzer A dual to Lyapunov's stability theorem , 2001 .

[37]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[38]  J. William Helton,et al.  Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets , 2007, SIAM J. Optim..

[39]  Vladimir Gaitsgory,et al.  Linear Programming Approach to Deterministic Infinite Horizon Optimal Control Problems with Discounting , 2009, SIAM J. Control. Optim..

[40]  Chih-fen Chang,et al.  Qualitative Theory of Differential Equations , 1992 .

[41]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[42]  J. Lasserre,et al.  Optimisation globale et théorie des moments , 2000 .

[43]  Martine Ganet-Schoeller,et al.  Measures and LMI for Space Launcher Robust Control Validation , 2012, ROCOND.

[44]  J. Warga Optimal control of differential and functional equations , 1972 .

[45]  N. Kryloff,et al.  La Theorie Generale De La Mesure Dans Son Application A L'Etude Des Systemes Dynamiques De la Mecanique Non Lineaire , 1937 .

[46]  M. Poincaré,et al.  L’avenir des mathématiques , 1908 .

[47]  O. Hernández-Lerma,et al.  Markov chains and invariant probabilities , 2003 .

[48]  J. Helton,et al.  Linear matrix inequality representation of sets , 2003, math/0306180.

[49]  Monique Laurent,et al.  Semidefinite optimization , 2019, Graphs and Geometry.

[50]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[51]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..

[52]  M. Mackey,et al.  Probabilistic properties of deterministic systems , 1985, Acta Applicandae Mathematicae.

[53]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[54]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[55]  S. Rachev,et al.  Mass transportation problems , 1998 .

[56]  J. Rubio Control and Optimization: The Linear Treatment of Nonlinear Problems , 1986 .

[57]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[58]  J. Lasserre,et al.  Detecting global optimality and extracting solutions in GloptiPoly , 2003 .

[59]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[60]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[61]  Franz Rendl,et al.  Semidefinite programming and integer programming , 2002 .

[62]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .