Optimization on linear matrix inequalities for polynomial systems control
暂无分享,去创建一个
[1] R. V. Gamkrelidze,et al. Principles of optimal control theory , 1977 .
[2] Hector O. Fattorini,et al. Infinite Dimensional Optimization and Control Theory: References , 1999 .
[3] M. Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .
[4] J. Lasserre. Moments, Positive Polynomials And Their Applications , 2009 .
[5] Raul E. Curto,et al. Truncated K-moment problems in several variables , 2005 .
[6] T. Carleman. Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires , 1932 .
[7] J. Lasserre,et al. Solving nonconvex optimization problems , 2004, IEEE Control Systems.
[8] Rekha R. Thomas,et al. Semidefinite Optimization and Convex Algebraic Geometry , 2012 .
[9] Luca Zaccarian,et al. Design of Marx generators as a structured eigenvalue assignment , 2013, Autom..
[10] W. Steeb,et al. Nonlinear dynamical systems and Carleman linearization , 1991 .
[11] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[12] P. Pedregal. Parametrized measures and variational principles , 1997 .
[13] Kellen Petersen August. Real Analysis , 2009 .
[14] A. F. Filippov. Classical Solutions of Differential Equations with Multi-Valued Right-Hand Side , 1967 .
[15] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .
[16] L. Young,et al. Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .
[17] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[18] Anders Rantzer,et al. Convex Programs for Temporal Verification of Nonlinear Dynamical Systems , 2007, SIAM J. Control. Optim..
[19] C. Villani. Topics in Optimal Transportation , 2003 .
[20] J. Liouville,et al. Note sur la Théorie de la Variation des constantes arbitraires. , 1838 .
[21] Lihong Zhi,et al. Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions , 2010, SIAM J. Optim..
[22] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[23] B. Craven. Control and optimization , 2019, Mathematical Modelling of the Human Cardiovascular System.
[24] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[25] Yurii Nesterov,et al. Squared Functional Systems and Optimization Problems , 2000 .
[26] James Renegar,et al. Hyperbolic Programs, and Their Derivative Relaxations , 2006, Found. Comput. Math..
[27] Emmanuel Trélat,et al. Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations , 2007, SIAM J. Control. Optim..
[28] Tomáš Roubíček,et al. Relaxation in Optimization Theory and Variational Calculus , 1997 .
[29] Didier Henrion,et al. How GloptiPoly is applied to problems in robust and nonlinear control , 2004 .
[30] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[31] Bernd Sturmfels,et al. The algebraic degree of semidefinite programming , 2010, Math. Program..
[32] L. G. van Willigenburg,et al. Control and Optimization , 2006 .
[33] A. Nemirovski. Advances in convex optimization : conic programming , 2005 .
[34] Heinrich Rubens,et al. Revue générale des Sciences pures et appliquées , 1891 .
[35] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[36] A. Rantzer. A dual to Lyapunov's stability theorem , 2001 .
[37] Henri Poincaré,et al. méthodes nouvelles de la mécanique céleste , 1892 .
[38] J. William Helton,et al. Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets , 2007, SIAM J. Optim..
[39] Vladimir Gaitsgory,et al. Linear Programming Approach to Deterministic Infinite Horizon Optimal Control Problems with Discounting , 2009, SIAM J. Control. Optim..
[40] Chih-fen Chang,et al. Qualitative Theory of Differential Equations , 1992 .
[41] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[42] J. Lasserre,et al. Optimisation globale et théorie des moments , 2000 .
[43] Martine Ganet-Schoeller,et al. Measures and LMI for Space Launcher Robust Control Validation , 2012, ROCOND.
[44] J. Warga. Optimal control of differential and functional equations , 1972 .
[45] N. Kryloff,et al. La Theorie Generale De La Mesure Dans Son Application A L'Etude Des Systemes Dynamiques De la Mecanique Non Lineaire , 1937 .
[46] M. Poincaré,et al. L’avenir des mathématiques , 1908 .
[47] O. Hernández-Lerma,et al. Markov chains and invariant probabilities , 2003 .
[48] J. Helton,et al. Linear matrix inequality representation of sets , 2003, math/0306180.
[49] Monique Laurent,et al. Semidefinite optimization , 2019, Graphs and Geometry.
[50] Vladimir A. Yakubovich,et al. Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..
[51] Jiawang Nie,et al. Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..
[52] M. Mackey,et al. Probabilistic properties of deterministic systems , 1985, Acta Applicandae Mathematicae.
[53] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[54] R. A. Silverman,et al. Introductory Real Analysis , 1972 .
[55] S. Rachev,et al. Mass transportation problems , 1998 .
[56] J. Rubio. Control and Optimization: The Linear Treatment of Nonlinear Problems , 1986 .
[57] Anton van den Hengel,et al. Semidefinite Programming , 2014, Computer Vision, A Reference Guide.
[58] J. Lasserre,et al. Detecting global optimality and extracting solutions in GloptiPoly , 2003 .
[59] Zdzisław Denkowski,et al. Set-Valued Analysis , 2021 .
[60] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[61] Franz Rendl,et al. Semidefinite programming and integer programming , 2002 .
[62] Aharon Ben-Tal,et al. Lectures on modern convex optimization , 1987 .