Use of median‐based estimator to construct Phase II exponential chart

[1]  N. Kumar Exact distributions of tests of outliers for exponential samples , 2019 .

[2]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[3]  Fah Fatt Gan,et al.  Designs of One- and Two-Sided Exponential EWMA Charts , 1998 .

[4]  Chien-Tai Lin,et al.  Testing for multiple upper and lower outliers in an exponential sample , 2017 .

[5]  Nirpeksh Kumar,et al.  Design and implementation of qth quantile‐unbiased tr‐chart for monitoring times between events , 2019, Qual. Reliab. Eng. Int..

[6]  Min Zhang,et al.  Exponential CUSUM Charts with Estimated Control Limits , 2014, Qual. Reliab. Eng. Int..

[7]  N. Kumar Testing of Suspected Observations in an Exponential Sample With Unknown Origin , 2015 .

[8]  Thong Ngee Goh,et al.  Design of exponential control charts using a sequential sampling scheme , 2006 .

[9]  Connie M. Borror,et al.  Robustness of the time between events CUSUM , 2003 .

[10]  Thong Ngee Goh,et al.  Some effective control chart procedures for reliability monitoring , 2002, Reliab. Eng. Syst. Saf..

[11]  Stefan H. Steiner,et al.  An Overview of Phase I Analysis for Process Improvement and Monitoring , 2014 .

[12]  Athanasios C. Rakitzis,et al.  Monitoring exponential data using two-sided control charts with runs rules , 2016 .

[13]  Subha Chakraborti,et al.  Boxplot‐based phase I control charts for time between events , 2012, Qual. Reliab. Eng. Int..

[14]  N. Kumar Conditional analysis of Phase II exponential chart for monitoring times to an event , 2020, Quality Technology & Quantitative Management.

[15]  F GanF,et al.  指数EWMA管理図のARL(平均連長)を計算する , 2000 .

[16]  James M. Lucas,et al.  Counted Data CUSUM's , 1985 .

[17]  M. Xie,et al.  Monitoring time-between-events for health management , 2010, 2010 Prognostics and System Health Management Conference.

[18]  Pei-Wen Chen,et al.  An ARL-unbiased design of time-between-events control charts with runs rules , 2011 .

[19]  Subhabrata Chakraborti,et al.  Run Length Distribution and Percentiles: The Shewhart Chart with Unknown Parameters , 2007 .

[20]  A. Kimber,et al.  The Null Distribution of a Test for Two Upper Outliers in an Exponential Sample , 1981 .

[21]  M. A. Graham,et al.  Phase I Statistical Process Control Charts: An Overview and Some Results , 2008 .

[22]  Stephen B. Vardeman,et al.  Average Run Lengths for CUSUM Schemes When Observations Are Exponentially Distributed , 1985 .

[23]  Subha Chakraborti,et al.  Improved Phase I Control Charts for Monitoring Times Between Events , 2015, Qual. Reliab. Eng. Int..

[24]  Charles W. Champ,et al.  The Run Length Distribution of the CUSUM with Estimated Parameters , 2004 .

[25]  Min Xie,et al.  Design of Gamma Charts Based on Average Time to Signal , 2016, Qual. Reliab. Eng. Int..

[26]  Subhabrata Chakraborti,et al.  Phase II Shewhart‐type Control Charts for Monitoring Times Between Events and Effects of Parameter Estimation , 2016, Qual. Reliab. Eng. Int..

[27]  Christian H. Weiß,et al.  Properties of the exponential EWMA chart with parameter estimation , 2010, Qual. Reliab. Eng. Int..

[28]  N. Kumar,et al.  Improved Shewhart-Type Charts for Monitoring Times Between Events , 2017 .

[29]  Eugenio K. Epprecht,et al.  Effect of the Amount of Phase I Data on the Phase II Performance of S2 and S Control Charts , 2015 .

[30]  Joel Smith,et al.  Control Charts Based on the Exponential Distribution: Adapting Runs Rules for the t Chart , 2013 .

[31]  Philippe Castagliola,et al.  Some Recent Developments on the Effects of Parameter Estimation on Control Charts , 2014, Qual. Reliab. Eng. Int..

[32]  William H. Woodall,et al.  The Difficulty in Designing Shewhart X̄ and X Control Charts with Estimated Parameters , 2015 .

[33]  S. Lalitha,et al.  Multiple outlier test for upper outliers in an exponential sample , 2012 .

[34]  Yuan Cheng,et al.  Phase II synthetic exponential charts and effect of parameter estimation , 2018 .