Constrained Confidence Matching for Planar Object Tracking

Tracking planar objects has a wide range of applications in robotics. Conventional template tracking algorithms, however, often fail to observe fast object motion or drift significantly after a period of time, due to drastic object appearance change. To address such challenges, we propose a novel constrained confidence matching algorithm for motion estimation and a robust Kalman filter for template updating. Integrated with an accurate occlusion detector, our approach achieves accurate motion estimation in presence of partial occlusion, by excluding occluded pixels from computation of motion parameters. Furthermore, the proposed Kalman filter employs a novel control-input model to handle the object appearance change, which brings our tracker high robustness against sudden illumination change and heavy motion blur. For evaluation, we compare the proposed tracker with several state-of-the-art planar object trackers on two public benchmark datasets. Experimental results show that our algorithm achieves robust tracking results against various environmental variations, and outperforms baseline algorithms remarkably on both datasets.

[1]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Éric Marchand,et al.  Accurate real-time tracking using mutual information , 2010, 2010 IEEE International Symposium on Mixed and Augmented Reality.

[3]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Eros Comunello,et al.  Direct visual tracking under extreme illumination variations using the sum of conditional variance , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[5]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[6]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[9]  Russell H. Taylor,et al.  Visual tracking using the sum of conditional variance , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Vincent Lepetit,et al.  Fast Keypoint Recognition Using Random Ferns , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Philip H. S. Torr,et al.  Efficient online structured output learning for keypoint-based object tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[13]  Kostas Daniilidis,et al.  Fully Automatic Registration of 3D Point Clouds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[14]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.

[15]  Nassir Navab,et al.  Online Learning of Linear Predictors for Real-Time Tracking , 2012, ECCV.

[16]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[17]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Aaron Hertzmann,et al.  Nonrigid Structure-from-Motion: Estimating Shape and Motion with Hierarchical Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  M. Worring,et al.  Occlusion robust adaptive template tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[20]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[21]  Maxime Meilland,et al.  Improving NCC-Based Direct Visual Tracking , 2012, ECCV.

[22]  Haibin Ling,et al.  Gracker: A Graph-Based Planar Object Tracker , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Erik Blasch,et al.  Minimum Error Bounded Efficient L1 Tracker with Occlusion Detection (PREPRINT) , 2011 .

[24]  Andreas Geiger,et al.  Visual SLAM for autonomous ground vehicles , 2011, 2011 IEEE International Conference on Robotics and Automation.

[25]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[26]  Michael Gleicher,et al.  Projective registration with difference decomposition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Frank Dellaert,et al.  Jacobian images of super-resolved texture maps for model-based motion estimation and tracking , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[28]  Vincent Lepetit,et al.  Monocular Model-Based 3D Tracking of Rigid Objects: A Survey , 2005, Found. Trends Comput. Graph. Vis..

[29]  Tobias Höllerer,et al.  Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking , 2011, International Journal of Computer Vision.

[30]  Lin Chen,et al.  Illumination insensitive efficient second-order minimization for planar object tracking , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[31]  James B. Rawlings,et al.  Estimation of the disturbance structure from data using semidefinite programming and optimal weighting , 2009, Autom..

[32]  Frank Chongwoo Park,et al.  A Geometric Particle Filter for Template-Based Visual Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  David Joseph Tan,et al.  Multi-forest Tracker: A Chameleon in Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[35]  Baba C. Vemuri,et al.  Non-Rigid Multi-Modal Image Registration Using Cross-Cumulative Residual Entropy , 2007, International Journal of Computer Vision.

[36]  Arnold W. M. Smeulders,et al.  Fast occluded object tracking by a robust appearance filter , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Xi Zhang,et al.  Tracking benchmark and evaluation for manipulation tasks , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).