3D FEM simulation of chip breakage in metal cutting

[1]  Fritz Klocke,et al.  Finite-element-analysis of the relationship between chip geometry and stress triaxiality distribution in the chip breakage location of metal cutting operations , 2015, Simul. Model. Pract. Theory.

[2]  Fritz Klocke,et al.  An Analytical Model of the Temperature Distribution in the Chip Breakage Location of Metal Cutting Operations , 2015 .

[3]  Fritz Klocke,et al.  Analytical study on the relationship between chip geometry and equivalent strain distribution on the free surface of chips in metal cutting , 2014 .

[4]  Rajiv Shivpuri,et al.  Stress Triaxiality in Chip Segmentation During High Speed Machining of Titanium Alloy , 2014 .

[5]  F. Klocke,et al.  FE-simulation of machining processes with a new material model , 2014 .

[6]  V.A.M. Cristino,et al.  Tribology in Metal Cutting , 2013 .

[7]  Fritz Klocke,et al.  Inverse Identification of the Constitutive Equation of Inconel 718 and AISI 1045 from FE Machining Simulations , 2013 .

[8]  F. Klocke,et al.  A new experimental methodology to analyse the friction behaviour at the tool-chip interface in metal cutting , 2012, Prod. Eng..

[9]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[10]  Fritz Klocke,et al.  3D FEM Model for the Prediction of Chip Breakage , 2011 .

[11]  V. Astakhov,et al.  Modeling of Serrated Chip Formation With a Fracture Locus Approach , 2011 .

[12]  M. R. Vaziri,et al.  A new calibration method for ductile fracture models as chip separation criteria in machining , 2010, Simul. Model. Pract. Theory.

[13]  L. Meyer,et al.  Ductile failure model for the description of AISI 1045 behavior under different loading conditions , 2009 .

[14]  H. Warlimont,et al.  Metal Forming Data of Ferrous Alloys - deformation behaviour , 2009 .

[15]  M. Spittel,et al.  Steel symbol/number: C45/1.0503 , 2009 .

[16]  T. Wierzbicki,et al.  A new model of metal plasticity and fracture with pressure and Lode dependence , 2008 .

[17]  Yuanli Bai,et al.  Effect of loading history in necking and fracture , 2008 .

[18]  Jae-Hyung Sim,et al.  Performance evaluation of chip breaker utilizing neural network , 2009 .

[19]  A. K. Balaji,et al.  Performance-Based Predictive Models and Optimization Methods for Turning Operations and Applications: Part 2—Assessment of Chip Forms/Chip Breakability , 2006 .

[20]  Tomasz Wierzbicki,et al.  On the cut-off value of negative triaxiality for fracture , 2005 .

[21]  Tuğrul Özel,et al.  A Methodology to Determine Work Material Flow Stress and Tool-Chip Interfacial Friction Properties by Using Analysis of Machining , 2006 .

[22]  D. Klingbeil,et al.  Simulation of failure under dynamic leading at different states of triaxiality for a nickel-base superalloy , 2003 .

[23]  Li Zhou Machining Chip-Breaking Prediction with Grooved Inserts in Steel Turning , 2002 .

[24]  G. Sauthoff,et al.  Refractory, hard and intermetallic materials , 2002 .

[25]  Taylan Altan,et al.  Process modeling in machining. Part I: determination of flow stress data , 2001 .

[26]  Sang Jo Lee,et al.  Efficient Chip Breaker Design by Predicting the Chip Breaking Performance , 2001 .

[27]  Yusuf Altintas,et al.  Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design , 2000 .

[28]  N. Ramakrishnan,et al.  Analysis of chip breaking during orthogonal machining of Al/SiCp composites , 1999 .

[29]  I. S. Jawahir,et al.  The Effects of Cutting Tool Thermal Conductivity on Tool-Chip Contact Length and Cyclic Chip Formation in Machining with Grooved Tools , 1999 .

[30]  Spfc Serge Jaspers Metal cutting mechanics and material behaviour , 1999 .

[31]  V. Astakhov Metal Cutting Mechanics , 1998 .

[32]  Ning Fang,et al.  Influence of the geometrical parameters of the chip groove on chip breaking performance using new-style chip formers , 1998 .

[33]  S. M. Athavale,et al.  Material Damage-Based Model for Predicting Chip-Breakability , 1997 .

[34]  R.M.D. Mesquita,et al.  An experimental study of the effect of cutting speed on chip breaking , 1996 .

[35]  K.H.W. Seah,et al.  A three-dimensional model of chip flow, chip curl and chip breaking under the concept of equivalent parameters , 1995 .

[36]  I. S. Jawahir,et al.  On the Controllability of Chip Breaking Cycles and Modes of Chip Breaking in Metal Machining , 1990 .

[37]  C. A. van Luttervelt,et al.  Characteristic Parameters of Chip Control in Turning Operations with Indexable Inserts and Three-Dimensionally Shaped Chip Formers , 1989 .

[38]  P.L.B. Oxley,et al.  The Tool Restricted Contact Effect as a Major Influencing Factor in Chip Breaking: An Experimental Analysis , 1988 .

[39]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[40]  J. Peklenik,et al.  Chip Curl, Chip Breaking and Chip Control of the Difficult-to-Cut Materials , 1980 .

[41]  M. Y. Friedman,et al.  Investigation of the tool-chip contact length in metal cutting , 1970 .

[42]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[43]  K. Nakayama,et al.  Chip Curl in Metal Cutting Process , 1961 .