Vibration analysis of a cantilevered trapezoidal moderately thick plate with variable thickness

[1]  R. S. Srinivasan,et al.  Free vibration of cantilever quadrilateral plates , 1983 .

[2]  Charles W. Bert,et al.  The differential quadrature method for irregular domains and application to plate vibration , 1996 .

[3]  Wei Xing Zheng,et al.  Vibration of skew plates by the MLS-Ritz method , 2008 .

[4]  Usha Gupta,et al.  DQM modeling of rectangular plate resting on two parameter foundation , 2016 .

[5]  Shenshen Chen,et al.  Free vibration of moderately thick functionally graded plates by a meshless local natural neighbor interpolation method , 2015 .

[6]  A. Farajpour,et al.  Free vibration of simply supported rectangular plates on Pasternak foundation: An exact and three-dimensional solution , 2014 .

[7]  Inderjit Chopra,et al.  Vibration of simply-supported trapezoidal plates II. Unsymmetric trapezoids , 1971 .

[8]  I. Shufrin,et al.  A semi-analytical approach for the geometrically nonlinear analysis of trapezoidal plates , 2010 .

[9]  W. X. Wu,et al.  Free vibration analysis of plates using least-square-based finite difference method , 2007 .

[10]  K. M. Liew,et al.  Free vibration analysis of functionally graded plates using the element-free kp-Ritz method , 2009 .

[11]  Joseph. Petrolito,et al.  Vibration and stability analysis of thick orthotropic plates using hybrid-Trefftz elements , 2014 .

[12]  M. Azhari,et al.  Non-linear free vibration analysis of point supported laminated composite skew plates , 2015 .

[13]  T. Kaneko On Timoshenko's correction for shear in vibrating beams , 1975 .

[14]  H. Afshari,et al.  GENERALIZED DIFFERENTIAL QUADRATURE METHOD FOR VIBRATION ANALYSIS OF CANTILEVER TRAPEZOIDAL FG THICK PLATE , 2016 .

[15]  Xinwei Wang,et al.  Accurate vibration analysis of skew plates by the new version of the differential quadrature method , 2014 .

[16]  C. Bert,et al.  Differential Quadrature Method in Computational Mechanics: A Review , 1996 .

[17]  K. M. Liew,et al.  Vibration of Mindlin plates. Programming the p‐version Ritz method. (Liew, K. M., Wang, C. M., Xiang, Y., Kitipornchai, S.) , 1999 .

[18]  Maurice Petyt,et al.  A finite element study of the vibration of trapezoidal plates , 1973 .

[19]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[20]  S. A. Eftekhari,et al.  Modified mixed Ritz-DQ formulation for free vibration of thick rectangular and skew plates with general boundary conditions , 2013 .

[21]  Yoshihiro Narita,et al.  Experimental study of the free vibration of clamped trapezoidal plates , 1983 .

[22]  Arthur W. Leissa,et al.  Vibrations of skewed cantilevered triangular, trapezoidal and parallelogram Mindlin plates with considering corner stress singularities , 2005 .

[23]  Ali Fallah,et al.  Free vibration analysis of moderately thick trapezoidal symmetrically laminated plates with various combinations of boundary conditions , 2012 .

[24]  M. Heidari-Rarani,et al.  Free vibration analysis of a non-uniform cantilever Timoshenko beam with multiple concentrated masses using DQEM , 2013 .

[25]  The static and free vibration analysis of a nonhomogeneous moderately thick plate using the meshless local radial point interpolation method , 2009 .

[26]  M. Dehghan,et al.  An effective combination of finite element and differential quadrature method for analyzing of plates partially resting on elastic foundation , 2016 .