Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses

Abstract. A nanolayered polymer films approach to designing and fabricating gradient refractive index (GRIN) lenses with designer refractive index distribution profiles and an independently prescribed lens surface geometry have been demonstrated to produce a new class of optics. This approach utilized nanolayered polymer materials, constructed with polymethylmethacrylate and a styrene-co-acrylonitrile copolymer with a tailorable refractive index intermediate to bulk materials, to fabricate discrete GRIN profile materials. A process to fabricate nanolayered polymer GRIN optics from these materials through thermoforming and finishing steps is reviewed. A collection of technology-demonstrating previously reported nanolayered GRIN case studies is presented that include: (1) the optical performance of a f/# 2.25 spherical GRIN plano-convex singlet with one quarter (2) the weight of a similar BK7 lens and a bio-inspired aspheric human eye GRIN lens. Original research on the fabrication and characterization of a Luneburg inspired GRIN ball lens is presented as a developing application of the nanolayered polymer technology.

[1]  J F Koretz,et al.  How the human eye focuses. , 1988, Scientific American.

[2]  R. Fernald Evolution of eyes , 2000, Current Opinion in Neurobiology.

[3]  Pablo Artal,et al.  The eye's aplanatic answer , 2008 .

[4]  Yasuhiro Koike,et al.  New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays. , 1988, Applied optics.

[5]  Guy Beadie,et al.  A bio-inspired polymeric gradient refractive index (GRIN) human eye lens. , 2012, Optics express.

[6]  Eric Baer,et al.  Biomimetic Gradient Index (GRIN) Lenses , 2006 .

[7]  Michael Ponting,et al.  Polymer Nanostructures by Forced Assembly: Process, Structure, and Properties , 2010 .

[8]  Anna Gislén,et al.  Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans , 2004, Vision Research.

[9]  M. Dubbelman,et al.  Change in shape of the aging human crystalline lens with accommodation , 2005, Vision Research.

[10]  James S. Shirk,et al.  New class of bioinspired lenses with a gradient refractive index , 2007 .

[11]  R. Augusteyn,et al.  Macromolecular structure of the eye lens , 1998 .

[12]  Lars Gislén,et al.  Advanced optics in a jellyfish eye , 2005, Nature.

[13]  D. Nilsson,et al.  Vision Optics and EvolutionNature's engineering has produced astonishing diversity in eye design , 1989 .

[14]  Michael F. Land,et al.  Optics and Vision in Invertebrates , 1981 .

[15]  C. Campbell,et al.  Nested shell optical model of the lens of the human eye. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Andrey A. Lipovskii,et al.  Phosphate glasses for GRIN structures by ion exchange , 2008 .

[17]  David R. Smith,et al.  Extreme-angle broadband metamaterial lens. , 2010, Nature materials.

[18]  James S. Shirk,et al.  A Widely Tunable Refractive Index in a Nanolayered Photonic Material , 2004 .

[19]  Xiang Zhang,et al.  Plasmonic Luneburg and Eaton lenses. , 2011, Nature nanotechnology.

[20]  Y Sumi,et al.  Spherical gradient-index sphere lens. , 1986, Applied optics.

[21]  Mark J Schnitzer,et al.  Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry. , 2002, Optics letters.

[22]  Guy Beadie,et al.  Achromatic GRIN singlet lens design. , 2013, Optics express.

[23]  Paul A Lane,et al.  Optical properties of a bio-inspired gradient refractive index polymer lens. , 2008, Optics express.

[24]  Josep Arasa,et al.  Single dispersive gradient-index profile for the aging human lens. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  D T Moore,et al.  Gradient-index optics: a review. , 1980, Applied optics.

[26]  N Mamalis,et al.  Complications of intraocular lenses. A historical and histopathological review. , 1984, Survey of ophthalmology.

[27]  W V Bush Complications of intraocular lenses. , 1983, Ophthalmology.

[28]  Dean A. Scribner,et al.  Materials for Bio-inspired Optics , 2002 .

[29]  U. Leonhardt,et al.  Luneburg lens in silicon photonics. , 2011, Optics express.

[30]  Vijay Modi,et al.  Gradient-index lenses for near-ideal imaging and concentration with realistic materials. , 2011, Optics express.

[31]  Robert C. Augusteyn,et al.  Species variability in optical parameters of the eye lens , 1993 .

[32]  P. J. Sands,et al.  A Wide-angle Gradient Index Optical Model of the Crystalline Lens and Eye of the Rainbow Trout , 1996, Vision Research.

[33]  T. Cui,et al.  Three-dimensional broadband and broad-angle transformation-optics lens. , 2010, Nature communications.

[34]  P. J. Sands,et al.  A wide-angle gradient index optical model of the crystalline lens and eye of the octopus , 1999, Vision Research.

[35]  Eric Baer,et al.  Polymeric One‐Dimensional Photonic Crystals by Continuous Coextrusion , 2007 .

[36]  B. Pierscionek,et al.  The gradient index lens of the eye: An opto-biological synchrony , 2012, Progress in Retinal and Eye Research.