A new probabilistic and entropy fusion approach for management of information sources

This paper describes a new probabilistic fusion methodology based on Shannon’s entropy, whose goal is to reduce the combination space by explicitly representing the notions of source redundancy and source complementarity in form of entropy measures. This fusion methodology called Entropy Fusion Model (EFM) is defined and implemented in three steps: modeling step, combination step and decision step. The EFM approach shows how an information fusion problem can be formulated by using entropy criteria minimization as a basis for guiding the fusion system to the best fused information. The main advantage of such a fusion approach is to optimize the choice of measurements provided by information sources in order to improve the performance of the information fusion system. Experimental results from an application to mobile robotics are presented illustrating the performances and the robustness of the Entropy Adaptative Aggregation (EA2) resulting algorithm.

[1]  Frank P. Ferrie,et al.  Autonomous exploration: driven by uncertainty , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Xavier Briottet,et al.  Presentation and description of two classification methods using data fusion based on sensor management , 2001, Inf. Fusion.

[3]  J. Ross Quinlan,et al.  Learning Efficient Classification Procedures and Their Application to Chess End Games , 1983 .

[4]  A. Mohammad-Djafari Probabilistic Methods for Data Fusion , 1998 .

[5]  Yasuichi Horibe,et al.  Entropy and correlation , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Frank P. Ferrie,et al.  On the Sequential Accumulation of Evidence , 2004, International Journal of Computer Vision.

[7]  Pramod K. Varshney,et al.  Distributed Detection and Data Fusion , 1996 .

[8]  Mohamed Barboucha Modélisation structurale des systèmes complexes, extraction et validation des règles d'un système expert , 1987 .

[9]  Philippe Smets,et al.  The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Ole Ravn,et al.  Sensor management for identity fusion on a mobile robot , 1998 .

[11]  Christophe Desrousseaux Utilisation d'un critère entropique dans les systèmes de détection , 1998 .

[12]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .

[13]  B. Fassinut-Mombot,et al.  An entropy method for multisource data fusion , 2000, Proceedings of the Third International Conference on Information Fusion.

[14]  H. Maître,et al.  01 - Fusion de données en traitement d'images: modèles d'information et décisions , 1994 .

[15]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[16]  A. Mohammad-Djafari A Matlab Program to Calculate the Maximum Entropy Distributions , 2001, physics/0111126.

[17]  A. Mohammad-Djafari Entropie en traitement du signal , 1998 .

[18]  Settimo Termini,et al.  A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory , 1972, Inf. Control..

[19]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[20]  H. Leung,et al.  Minimum entropy approach for multisensor data fusion , 1997, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics.

[21]  P. L. Bogler,et al.  Shafer-dempster reasoning with applications to multisensor target identification systems , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Frank P. Ferrie,et al.  Active Object Recognition: Looking for Differences , 2001, International Journal of Computer Vision.

[23]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[24]  Frank P. Ferrie,et al.  Informative Views and Sequential Recognition , 1996, ECCV.

[25]  A. Mohammad-Djafari Maximum Likelihood Estimation of the Lagrange Parameters of the Maximum Entropy Distributions , 1992 .

[26]  Frank P. Ferrie,et al.  Entropy-based gaze planning , 2001, Image Vis. Comput..

[27]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[28]  Richard A. Highfield,et al.  Calculation of maximum entropy distributions and approximation of marginalposterior distributions , 1988 .