Spline Interpolation and Wavelet Construction

Abstract The method of Dubuc and Deslauriers on symmetric interpolatory subdivision is extended to study the relationship between interpolation processes and wavelet construction. Refinable and interpolatory functions are constructed in stages from B -splines. Their method constructs the filter sequence (its Laurent polynomial) of the interpolatory function as a product of Laurent polynomials. This provides a natural way of splitting the filter for the construction of orthonormal and biorthogonal scaling functions leading to orthonormal and biorthogonal wavelets. Their method also leads to a class of filters which includes the minimal length Daubechies compactly supported orthonormal wavelet coefficients. Examples of “good” filters are given together with results of numerical experiments conducted to test the performance of these filters in data compression.

[1]  Tim N. T. Goodman,et al.  Orthonormal Cardinal Functions , 1994 .

[2]  Leonard Carlitz,et al.  Eulerian Numbers and Polynomials , 1959 .

[3]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[4]  W. Lawton Necessary and sufficient conditions for constructing orthonormal wavelet bases , 1991 .

[5]  Gilbert Strang,et al.  Eigenvalues of (↓2)H and convergence of the cascade algorithm , 1996, IEEE Trans. Signal Process..

[6]  T. Eirola Sobolev characterization of solutions of dilation equations , 1992 .

[7]  D X Qi,et al.  A Class of Local Explicit Many-Knot Spline Interpolation Schemes. , 1981 .

[8]  C. Micchelli,et al.  Compactly supported fundamental functions for spline interpolation , 1988 .

[9]  Zuowei Shen,et al.  Multidimensional Interpolatory Subdivision Schemes , 1997 .

[10]  Charles A. Micchelli,et al.  Interpolatory Subdivision Schemes and Wavelets , 1996 .

[11]  I. Daubechies,et al.  A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME , 1992 .

[12]  Gilbert Strang,et al.  The optimal coefficients in Daubechies wavelets , 1992 .

[13]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .

[14]  C. Chui,et al.  Wavelets : theory, algorithms, and applications , 1994 .

[15]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[16]  Wayne Lawton,et al.  Multiresolution properties of the wavelet Galerkin operator , 1991 .

[17]  Hwee Huat Tan,et al.  Wavelet bases for a unitary operator , 1995, Proceedings of the Edinburgh Mathematical Society.

[18]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[19]  S. L. Lee,et al.  Stability and orthonormality of multivariate refinable functions , 1997 .

[20]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[21]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[22]  R. Jia Subdivision Schemes in L p Spaces , 1995 .

[23]  Rong-Qing Jia,et al.  Subdivision schemes inLp spaces , 1995, Adv. Comput. Math..

[24]  I. J. Schoenberg Cardinal Spline Interpolation , 1987 .

[25]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[26]  I. J. Schoenberg,et al.  Cardinal interpolation and spline functions , 1969 .

[27]  Zuowei Shen,et al.  General interpolation on the lattice $h{\Bbb Z}^s$: Compactly supported fundamental solutions , 1995 .

[28]  L. Schumaker,et al.  Recent advances in wavelet analysis , 1995 .

[29]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[30]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[31]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .