Primal and Dual Methods for Unit Commitment in a Hydro-Thermal Power System
暂无分享,去创建一个
Werner Römisch | Rüdiger Schultz | Ralf Gollmer | Andris Möller | Matthias Peter Nowak | R. Schultz | W. Römisch | M. P. Nowak | A. Möller | R. Gollmer
[1] Stefan Feltenmark,et al. Dual Applications of Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex Problems , 1999, SIAM J. Optim..
[2] Antonio J. Conejo,et al. Short-term hydro-thermal coordination by Lagrangian relaxation: solution of the dual problem , 1999 .
[3] E. Allen,et al. The Unit Commitment Problem , 1999 .
[4] Peter B. Luh,et al. An algorithm for solving the dual problem of hydrothermal scheduling , 1998 .
[5] G. Schwarzbach,et al. Optimale Blockauswahl bei der Kraftwerkseinsatzplanung der VEAG , 1997 .
[6] K. Kiwiel,et al. Solving Unit Commitment Problems in Power Production Planning , 1997 .
[7] Werner Römisch,et al. Solving the Unit Commitment Problem in Power Generation by Primal and Dual Methods , 1997 .
[8] Matthias Peter Nowak,et al. A Fast Descent Method for the Hydro Storage Subproblem in Power Generation , 1996 .
[9] M. Pirlot. General local search methods , 1996 .
[10] C. Lemaréchal,et al. Bundle methods applied to the unit-commitment problem , 1996 .
[11] Yves Crama,et al. Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.
[12] A Mm,et al. A Dual Method for the Unit Commitment Problem , 1995 .
[13] Krzysztof C. Kiwiel,et al. Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..
[14] Francisco D. Galiana,et al. Towards a more rigorous and practical unit commitment by Lagrangian relaxation , 1988 .
[15] Laurence A. Wolsey,et al. Valid inequalities for mixed 0-1 programs , 1986, Discret. Appl. Math..