Primal and Dual Methods for Unit Commitment in a Hydro-Thermal Power System

The unit commitment prob lem in a power generation system com prising thermal and pumped storage hy dro units is addressed A large scale mixed integer optimization model for unit commitment in a real power system is de veloped and solved by primal and dual ap proaches Both solution methods employ state of the art algorithms and software Results of test runs are reported

[1]  Stefan Feltenmark,et al.  Dual Applications of Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex Problems , 1999, SIAM J. Optim..

[2]  Antonio J. Conejo,et al.  Short-term hydro-thermal coordination by Lagrangian relaxation: solution of the dual problem , 1999 .

[3]  E. Allen,et al.  The Unit Commitment Problem , 1999 .

[4]  Peter B. Luh,et al.  An algorithm for solving the dual problem of hydrothermal scheduling , 1998 .

[5]  G. Schwarzbach,et al.  Optimale Blockauswahl bei der Kraftwerkseinsatzplanung der VEAG , 1997 .

[6]  K. Kiwiel,et al.  Solving Unit Commitment Problems in Power Production Planning , 1997 .

[7]  Werner Römisch,et al.  Solving the Unit Commitment Problem in Power Generation by Primal and Dual Methods , 1997 .

[8]  Matthias Peter Nowak,et al.  A Fast Descent Method for the Hydro Storage Subproblem in Power Generation , 1996 .

[9]  M. Pirlot General local search methods , 1996 .

[10]  C. Lemaréchal,et al.  Bundle methods applied to the unit-commitment problem , 1996 .

[11]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[12]  A Mm,et al.  A Dual Method for the Unit Commitment Problem , 1995 .

[13]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[14]  Francisco D. Galiana,et al.  Towards a more rigorous and practical unit commitment by Lagrangian relaxation , 1988 .

[15]  Laurence A. Wolsey,et al.  Valid inequalities for mixed 0-1 programs , 1986, Discret. Appl. Math..