On computing the determinant and Smith form of an integer matrix

A probabilistic algorithm is presented to find the determinant of a nonsingular, integer matrix. For a matrix A/spl isin/Z/sup n/spl times/n/ the algorithm requires O(n/sup 3.5/(log n)/sup 4.5/) bit operations (assuming for now that entries in A have constant size) using standard matrix and integer arithmetic. Using asymptotically fast matrix arithmetic, a variant is described which requires O(n/sup 2+/spl theta//2//spl middot/log/sup 2/nloglogn) bit operations, where n/spl times/n matrices can be multiplied with O(n/sup /spl theta//) operations. The determinant is found by computing the Smith form of the integer matrix an extremely useful canonical form in itself. Our algorithm is probabilistic of the Monte Carlo type. That is, it assumes a source of random bits and on any invocation of the algorithm there is a small probability of error.

[1]  Joachim von zur Gathen,et al.  Weitere zum Erfüllungsproblem polynomial äquivalente kombinatorische Aufgaben , 1976, Komplexität von Entscheidungsproblemen 1976.

[2]  J. Dixon Exact solution of linear equations usingP-adic expansions , 1982 .

[3]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[4]  Victor Y. Pan,et al.  Computing the Determinant and the Characteristic Polynomial of a Matrix via Solving Linear Systems of Equations , 1988, Inf. Process. Lett..

[5]  Erich Kaltofen,et al.  On computing determinants of matrices without divisions , 1992, ISSAC '92.

[6]  H. Cohen A course in computational number theory , 1993 .

[7]  Mark Giesbrecht,et al.  Nearly Optimal Algorithms for Canonical Matrix Forms , 1995, SIAM J. Comput..

[8]  Mariette Yvinec,et al.  Evaluation of a new method to compute signs of determinants , 1995, SCG '95.

[9]  Arne Storjohann,et al.  Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.

[10]  Mark Giesbrecht,et al.  Probabilistic Computation of the Smith Normal Form of a Sparse Integer Matrix , 1996, ANTS.

[11]  Wayne Eberly Processor-efficient parallel matrix inversion over abstract fields: two extensions , 1997, PASCO '97.

[12]  Manuel Bronstein,et al.  Fast deterministic computation of determinants of dense matrices , 1999, ISSAC '99.

[13]  Arne Storjohann,et al.  Diophantine linear system solving , 1999, ISSAC '99.

[14]  G. Villard Computing the Frobenius Normal Form of a Sparse Matrix , 2000 .

[15]  Jean-Guillaume Dumas,et al.  Integer Smith form via the valence: experience with large sparse matrices from homology , 2000, ISSAC.

[16]  D. Bressoud,et al.  A Course in Computational Number Theory , 2000 .

[17]  Mark Giesbrecht,et al.  Fast computation of the Smith form of a sparse integer matrix , 2002, computational complexity.