On computing the determinant and Smith form of an integer matrix
暂无分享,去创建一个
[1] Joachim von zur Gathen,et al. Weitere zum Erfüllungsproblem polynomial äquivalente kombinatorische Aufgaben , 1976, Komplexität von Entscheidungsproblemen 1976.
[2] J. Dixon. Exact solution of linear equations usingP-adic expansions , 1982 .
[3] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[4] Victor Y. Pan,et al. Computing the Determinant and the Characteristic Polynomial of a Matrix via Solving Linear Systems of Equations , 1988, Inf. Process. Lett..
[5] Erich Kaltofen,et al. On computing determinants of matrices without divisions , 1992, ISSAC '92.
[6] H. Cohen. A course in computational number theory , 1993 .
[7] Mark Giesbrecht,et al. Nearly Optimal Algorithms for Canonical Matrix Forms , 1995, SIAM J. Comput..
[8] Mariette Yvinec,et al. Evaluation of a new method to compute signs of determinants , 1995, SCG '95.
[9] Arne Storjohann,et al. Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.
[10] Mark Giesbrecht,et al. Probabilistic Computation of the Smith Normal Form of a Sparse Integer Matrix , 1996, ANTS.
[11] Wayne Eberly. Processor-efficient parallel matrix inversion over abstract fields: two extensions , 1997, PASCO '97.
[12] Manuel Bronstein,et al. Fast deterministic computation of determinants of dense matrices , 1999, ISSAC '99.
[13] Arne Storjohann,et al. Diophantine linear system solving , 1999, ISSAC '99.
[14] G. Villard. Computing the Frobenius Normal Form of a Sparse Matrix , 2000 .
[15] Jean-Guillaume Dumas,et al. Integer Smith form via the valence: experience with large sparse matrices from homology , 2000, ISSAC.
[16] D. Bressoud,et al. A Course in Computational Number Theory , 2000 .
[17] Mark Giesbrecht,et al. Fast computation of the Smith form of a sparse integer matrix , 2002, computational complexity.