Structure-induced variation of thermal conductivity in epoxy resin fibers.

The ability to control thermal conductivity is important in a wide variety of applications, especially in heat removal, heat insulation, and thermoelectric energy conversion. Herein, we reveal that the thermal conductivity of epoxy resin fibers increases on decreasing the fiber diameter and surpasses the bulk value (0.25 W m-1 K-1 at 300 K) for the fiber with a diameter of 211 nm. The variation of thermal conductivity in epoxy resin fibers can likely be attributed to their microstructure change-enhanced interface phonon scattering between amorphous and crystalline regions and the enhanced alignment of the molecular chain orientation.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  Jie Kong,et al.  Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[3]  Xutong Yang,et al.  Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities , 2017 .

[4]  Zhanhu Guo,et al.  Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. , 2016, Nanoscale.

[5]  R. Sun,et al.  Fibrous Epoxy Substrate with High Thermal Conductivity and Low Dielectric Property for Flexible Electronics , 2016 .

[6]  Kai Liu,et al.  Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K , 2015, Nature Communications.

[7]  Zhonghua Ni,et al.  Thermal conductivity of electrospun polyethylene nanofibers. , 2015, Nanoscale.

[8]  Woochul Kim,et al.  Strategies for engineering phonon transport in thermoelectrics , 2015 .

[9]  Soo-Jin Park,et al.  Synthesis and application of epoxy resins: A review , 2015 .

[10]  G. Lebon,et al.  Thermal conductivity of tubular nanowire composites based on a thermodynamical model , 2015 .

[11]  Hao Tang,et al.  Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons. , 2015, Nanoscale.

[12]  D. Poulikakos,et al.  Sub-amorphous thermal conductivity in ultrathin crystalline silicon nanotubes. , 2015, Nano letters.

[13]  Markus Antonietti,et al.  Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. , 2015, Nature nanotechnology.

[14]  L. Shao,et al.  High thermal conductivity in amorphous polymer blends by engineered interchain interactions. , 2015, Nature materials.

[15]  Zengyuan Guo,et al.  Ballistic-diffusive phonon transport and size induced anisotropy of thermal conductivity of silicon nanofilms , 2015 .

[16]  A. Narayanaswamy,et al.  Measuring thermal conductivity of polystyrene nanowires using the dual-cantilever technique. , 2014, The Review of scientific instruments.

[17]  Miguel Muñoz Rojo,et al.  Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials. , 2014, Nanoscale.

[18]  Zhang Jiang,et al.  Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers. , 2014, Nanoscale.

[19]  Thomas L. Bougher,et al.  High thermal conductivity of chain-oriented amorphous polythiophene. , 2014, Nature nanotechnology.

[20]  C. Pellerin,et al.  Molecular Orientation in Electrospun Fibers: From Mats to Single Fibers , 2013 .

[21]  Yong-Wei Zhang,et al.  Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering , 2013 .

[22]  D. Cahill,et al.  Thermal Conductivity of High-Modulus Polymer Fibers , 2013 .

[23]  Kenji Watanabe,et al.  Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. , 2013, Nano letters.

[24]  Eun Kyung Lee,et al.  The influence of phonon scatterings on the thermal conductivity of SiGe nanowires , 2012 .

[25]  Scott W. Waltermire,et al.  Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate. , 2011, Small.

[26]  Jie Kong,et al.  High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique , 2011 .

[27]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[28]  Gang Chen,et al.  Polyethylene nanofibres with very high thermal conductivities. , 2010, Nature nanotechnology.

[29]  Li Shi,et al.  Thermal and Structural Characterizations of Individual Single‐, Double‐, and Multi‐Walled Carbon Nanotubes , 2009 .

[30]  M. Kotaki,et al.  Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. , 2008, Journal of the American Chemical Society.

[31]  Arun Majumdar,et al.  Thermal conductance of thin silicon nanowires. , 2008, Physical review letters.

[32]  R. Prasher Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes , 2008 .

[33]  Jun Li,et al.  Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber , 2006 .

[34]  M. Dresselhaus,et al.  Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction , 2005 .

[35]  Li Shi,et al.  Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device , 2003 .

[36]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[37]  C. L. Choy,et al.  Thermal conductivity of polymers , 1977 .