Laplace–Beltrami Operator on Digital Surfaces

This article presents a novel discretization of the Laplace–Beltrami operator on digital surfaces. We adapt an existing convolution technique proposed by Belkin et al. (in: Teillaud (ed) Proceedings of the 24th ACM symposium on computational geometry, College Park, MD, USA, pp 278–287, 2008, https://doi.org/10.1145/1377676.1377725) for triangular meshes to topological border of subsets of $$\mathbb {Z}^n$$Zn. The core of the method relies on first-order estimation of measures associated with our discrete elements (such as length, area etc.). We show strong consistency (i.e., pointwise convergence) of the operator and compare it against various other discretizations.

[1]  K. Polthier,et al.  On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .

[2]  Hui Huang,et al.  Laplace–Beltrami Operator on Point Clouds Based on Anisotropic Voronoi Diagram , 2018, Comput. Graph. Forum.

[3]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[4]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[5]  Jacques-Olivier Lachaud,et al.  Heat Kernel Laplace-Beltrami Operator on Digital Surfaces , 2017, DGCI.

[6]  Stanislav Molchanov,et al.  DIFFUSION PROCESSES AND RIEMANNIAN GEOMETRY , 1975 .

[7]  Guoliang Xu Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..

[8]  P. LShWIP Convergence of Discrete Laplace-Beltrami Operators Over Surfaces , 2004 .

[9]  Alexandre Lenoir,et al.  Des outils pour les surfaces discretes, estimation d'invariants geometriques, preservation de la topologie, trace de geodesiques, visualisation , 1999 .

[10]  Konrad Polthier,et al.  On approximation of the Laplace–Beltrami operator and the Willmore energy of surfaces , 2011, Comput. Graph. Forum.

[11]  S. Varadhan On the behavior of the fundamental solution of the heat equation with variable coefficients , 2010 .

[12]  Johannes Wallner,et al.  Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..

[13]  Jacques-Olivier Lachaud,et al.  Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. (Non-Euclidean spaces and image analysis : Riemannian and discrete deformable models, discrete topology and geometry) , 2006 .

[14]  François de Vieilleville,et al.  Convex Digital Polygons, Maximal Digital Straight Segments and Convergence of Discrete Geometric Estimators , 2007, Journal of Mathematical Imaging and Vision.

[15]  François de Vieilleville,et al.  Fast, accurate and convergent tangent estimation on digital contours , 2007, Image Vis. Comput..

[16]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[17]  Marc Pouget,et al.  Estimating differential quantities using polynomial fitting of osculating jets , 2003, Comput. Aided Geom. Des..

[18]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[19]  Tamal K. Dey,et al.  Convergence, stability, and discrete approximation of Laplace spectra , 2010, SODA '10.

[20]  Konrad Polthier,et al.  Identifying Vector Field Singularities Using a Discrete Hodge Decomposition , 2002, VisMath.

[21]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[22]  Marc Alexa,et al.  Discrete Laplacians on general polygonal meshes , 2011, ACM Trans. Graph..

[23]  Jacques-Olivier Lachaud,et al.  Parameter-Free and Multigrid Convergent Digital Curvature Estimators , 2014, DGCI.

[24]  C. Mercat Discrete Riemann Surfaces and the Ising Model , 2001, 0909.3600.

[25]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[26]  Leonidas J. Guibas,et al.  Computing and processing correspondences with functional maps , 2016, SIGGRAPH Courses.

[27]  Rémy Malgouyres,et al.  Mesh Parameterization with Generalized Discrete Conformal Maps , 2012, Journal of Mathematical Imaging and Vision.

[28]  T. Regge General relativity without coordinates , 1961 .

[29]  Bruno Lévy,et al.  Spectral Mesh Processing , 2009, SIGGRAPH '10.

[30]  U. Mayer Numerical solutions for the surface diusion ow in three space dimensions , 2001 .

[31]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[32]  Jenny Harrison Stokes' theorem for nonsmooth chains , 1993 .

[33]  Jenny Harrison,et al.  Flux across nonsmooth boundaries and fractal Gauss/Green/Stokes' theorems , 1999 .

[34]  K. Fujiwara Eigenvalues of Laplacians on a closed Riemannian manifold and its nets , 1995 .

[35]  Wolfgang Carl,et al.  A Laplace Operator on Semi-Discrete Surfaces , 2016, Found. Comput. Math..

[36]  K. Polthier Computational Aspects of Discrete Minimal Surfaces , 2002 .

[37]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[38]  Jacques-Olivier Lachaud,et al.  Properties of Gauss Digitized Shapes and Digital Surface Integration , 2016, Journal of Mathematical Imaging and Vision.

[39]  Gabor T. Herman,et al.  Geometry of digital spaces , 1998, Optics & Photonics.

[40]  Christian Mercat,et al.  Discrete Complex Structure on Surfel Surfaces , 2008, DGCI.

[41]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[42]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[43]  Tristan Roussillon,et al.  Multigrid Convergence of Discrete Geometric Estimators , 2012 .

[44]  Olivier Teytaud,et al.  Adaptive estimation of normals and surface area for discrete 3-D objects: application to snow binary data from X-ray tomography , 2005, IEEE Transactions on Image Processing.

[45]  Konrad Polthier,et al.  Generalized shape operators on polyhedral surfaces , 2011, Comput. Aided Geom. Des..

[46]  Jacques-Olivier Lachaud,et al.  Integral Based Curvature Estimators in Digital Geometry , 2013, DGCI.

[47]  John J. Benedetto,et al.  Applied and numerical harmonic analysis , 1997 .

[48]  W. Rudin Principles of mathematical analysis , 1964 .

[49]  Guoliang Xu,et al.  Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces , 2006, Comput. Aided Geom. Des..

[50]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[51]  Gabriel Taubin,et al.  Geometric Signal Processing on Polygonal Meshes , 2000, Eurographics.

[52]  A. Krall Applied Analysis , 1986 .

[53]  Hao Zhang Discrete Combinatorial Laplacian Operators for Digital Geometry Processing , 2004 .

[54]  I. Holopainen Riemannian Geometry , 1927, Nature.

[55]  Shi-Min Hu,et al.  Principal curvatures from the integral invariant viewpoint , 2007, Comput. Aided Geom. Des..

[56]  Wallace S. Rutkowski,et al.  Measurement of the lengths of digitized curved lines , 1979 .

[57]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[58]  M. Wardetzky Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .

[59]  P. Rüegsegger,et al.  Direct Three‐Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[60]  Leo Grady,et al.  Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .

[61]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[62]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[63]  Marinette Revenu,et al.  Fast computation of the normal vector field of the surface of a 3-D discrete object , 1996, DGCI.

[64]  Mikhail Belkin,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..

[65]  Jacques-Olivier Lachaud,et al.  Voronoi-Based Geometry Estimator for 3D Digital Surfaces , 2014, DGCI.

[66]  Jacques-Olivier Lachaud,et al.  Multigrid convergent principal curvature estimators in digital geometry , 2014, Comput. Vis. Image Underst..

[67]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Construction of the Heat Kernel , 1997 .