Laplace–Beltrami Operator on Digital Surfaces
暂无分享,去创建一个
Jacques-Olivier Lachaud | David Coeurjolly | Tristan Roussillon | Thomas Caissard | T. Roussillon | D. Coeurjolly | J. Lachaud | T. Caissard
[1] K. Polthier,et al. On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .
[2] Hui Huang,et al. Laplace–Beltrami Operator on Point Clouds Based on Anisotropic Voronoi Diagram , 2018, Comput. Graph. Forum.
[3] Azriel Rosenfeld,et al. Digital geometry - geometric methods for digital picture analysis , 2004 .
[4] Eitan Grinspun,et al. Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.
[5] Jacques-Olivier Lachaud,et al. Heat Kernel Laplace-Beltrami Operator on Digital Surfaces , 2017, DGCI.
[6] Stanislav Molchanov,et al. DIFFUSION PROCESSES AND RIEMANNIAN GEOMETRY , 1975 .
[7] Guoliang Xu. Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..
[8] P. LShWIP. Convergence of Discrete Laplace-Beltrami Operators Over Surfaces , 2004 .
[9] Alexandre Lenoir,et al. Des outils pour les surfaces discretes, estimation d'invariants geometriques, preservation de la topologie, trace de geodesiques, visualisation , 1999 .
[10] Konrad Polthier,et al. On approximation of the Laplace–Beltrami operator and the Willmore energy of surfaces , 2011, Comput. Graph. Forum.
[11] S. Varadhan. On the behavior of the fundamental solution of the heat equation with variable coefficients , 2010 .
[12] Johannes Wallner,et al. Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..
[13] Jacques-Olivier Lachaud,et al. Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. (Non-Euclidean spaces and image analysis : Riemannian and discrete deformable models, discrete topology and geometry) , 2006 .
[14] François de Vieilleville,et al. Convex Digital Polygons, Maximal Digital Straight Segments and Convergence of Discrete Geometric Estimators , 2007, Journal of Mathematical Imaging and Vision.
[15] François de Vieilleville,et al. Fast, accurate and convergent tangent estimation on digital contours , 2007, Image Vis. Comput..
[16] Mark Meyer,et al. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.
[17] Marc Pouget,et al. Estimating differential quantities using polynomial fitting of osculating jets , 2003, Comput. Aided Geom. Des..
[18] Mark Meyer,et al. Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.
[19] Tamal K. Dey,et al. Convergence, stability, and discrete approximation of Laplace spectra , 2010, SODA '10.
[20] Konrad Polthier,et al. Identifying Vector Field Singularities Using a Discrete Hodge Decomposition , 2002, VisMath.
[21] Bruno Lévy,et al. Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.
[22] Marc Alexa,et al. Discrete Laplacians on general polygonal meshes , 2011, ACM Trans. Graph..
[23] Jacques-Olivier Lachaud,et al. Parameter-Free and Multigrid Convergent Digital Curvature Estimators , 2014, DGCI.
[24] C. Mercat. Discrete Riemann Surfaces and the Ising Model , 2001, 0909.3600.
[25] Gabriel Taubin,et al. A signal processing approach to fair surface design , 1995, SIGGRAPH.
[26] Leonidas J. Guibas,et al. Computing and processing correspondences with functional maps , 2016, SIGGRAPH Courses.
[27] Rémy Malgouyres,et al. Mesh Parameterization with Generalized Discrete Conformal Maps , 2012, Journal of Mathematical Imaging and Vision.
[28] T. Regge. General relativity without coordinates , 1961 .
[29] Bruno Lévy,et al. Spectral Mesh Processing , 2009, SIGGRAPH '10.
[30] U. Mayer. Numerical solutions for the surface diusion ow in three space dimensions , 2001 .
[31] Ulrike von Luxburg,et al. From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.
[32] Jenny Harrison. Stokes' theorem for nonsmooth chains , 1993 .
[33] Jenny Harrison,et al. Flux across nonsmooth boundaries and fractal Gauss/Green/Stokes' theorems , 1999 .
[34] K. Fujiwara. Eigenvalues of Laplacians on a closed Riemannian manifold and its nets , 1995 .
[35] Wolfgang Carl,et al. A Laplace Operator on Semi-Discrete Surfaces , 2016, Found. Comput. Math..
[36] K. Polthier. Computational Aspects of Discrete Minimal Surfaces , 2002 .
[37] Mikhail Belkin,et al. Discrete laplace operator on meshed surfaces , 2008, SCG '08.
[38] Jacques-Olivier Lachaud,et al. Properties of Gauss Digitized Shapes and Digital Surface Integration , 2016, Journal of Mathematical Imaging and Vision.
[39] Gabor T. Herman,et al. Geometry of digital spaces , 1998, Optics & Photonics.
[40] Christian Mercat,et al. Discrete Complex Structure on Surfel Surfaces , 2008, DGCI.
[41] Gaston H. Gonnet,et al. On the LambertW function , 1996, Adv. Comput. Math..
[42] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .
[43] Tristan Roussillon,et al. Multigrid Convergence of Discrete Geometric Estimators , 2012 .
[44] Olivier Teytaud,et al. Adaptive estimation of normals and surface area for discrete 3-D objects: application to snow binary data from X-ray tomography , 2005, IEEE Transactions on Image Processing.
[45] Konrad Polthier,et al. Generalized shape operators on polyhedral surfaces , 2011, Comput. Aided Geom. Des..
[46] Jacques-Olivier Lachaud,et al. Integral Based Curvature Estimators in Digital Geometry , 2013, DGCI.
[47] John J. Benedetto,et al. Applied and numerical harmonic analysis , 1997 .
[48] W. Rudin. Principles of mathematical analysis , 1964 .
[49] Guoliang Xu,et al. Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces , 2006, Comput. Aided Geom. Des..
[50] Mikhail Belkin,et al. Constructing Laplace operator from point clouds in Rd , 2009, SODA.
[51] Gabriel Taubin,et al. Geometric Signal Processing on Polygonal Meshes , 2000, Eurographics.
[52] A. Krall. Applied Analysis , 1986 .
[53] Hao Zhang. Discrete Combinatorial Laplacian Operators for Digital Geometry Processing , 2004 .
[54] I. Holopainen. Riemannian Geometry , 1927, Nature.
[55] Shi-Min Hu,et al. Principal curvatures from the integral invariant viewpoint , 2007, Comput. Aided Geom. Des..
[56] Wallace S. Rutkowski,et al. Measurement of the lengths of digitized curved lines , 1979 .
[57] Keenan Crane,et al. Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.
[58] M. Wardetzky. Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .
[59] P. Rüegsegger,et al. Direct Three‐Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.
[60] Leo Grady,et al. Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .
[61] Ulrich Pinkall,et al. Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..
[62] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[63] Marinette Revenu,et al. Fast computation of the normal vector field of the surface of a 3-D discrete object , 1996, DGCI.
[64] Mikhail Belkin,et al. Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..
[65] Jacques-Olivier Lachaud,et al. Voronoi-Based Geometry Estimator for 3D Digital Surfaces , 2014, DGCI.
[66] Jacques-Olivier Lachaud,et al. Multigrid convergent principal curvature estimators in digital geometry , 2014, Comput. Vis. Image Underst..
[67] S. Rosenberg. The Laplacian on a Riemannian Manifold: The Construction of the Heat Kernel , 1997 .