Rosetta Radio Science Investigations (RSI)

The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its new target comet 67 P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, its interplanetary orbit perturbed by nongravitational forces, its size and shape, its internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. The masses of two asteroids, Steins and Lutetia, shall be determined during flybys in 2008 and 2010, respectively. Secondary objectives are the radio sounding of the solar corona during the superior conjunctions of the spacecraft with the Sun during the cruise phase.The radio carrier links of the spacecraft Telemetry, Tracking and Command (TT&C) subsystem between the orbiter and the Earth will be used for these investigations. An Ultrastable oscillator (USO) connected to both transponders of the radio subsystem serves as a stable frequency reference source for both radio downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) in the one-way mode. The simultaneous and coherent dual-frequency downlinks via the High Gain Antenna (HGA) permit separation of contributions from the classical Doppler shift and the dispersive media effects caused by the motion of the spacecraft with respect to the Earth and the propagation of the signals through the dispersive media, respectively.The investigation relies on the observation of the phase, amplitude, polarization and propagation times of radio signals transmitted from the spacecraft and received with ground station antennas on Earth. The radio signals are affected by the medium through which the signals propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by the gravitational influence of the planet on the spacecraft and finally by the performance of the various systems involved both on the spacecraft and on ground.

[1]  Luciano Iess,et al.  Cassini Radio Science , 2004 .

[2]  J. Campbell,et al.  Gravitation and celestial mechanics investigations with Galileo , 1992 .

[3]  G. E. Wood,et al.  Radio science investigations with Voyager , 1977 .

[4]  M. Pätzold,et al.  Detection of the inner plasma pileup region at comet Halley during the Vega 1 flyby by the radio sounding experiment , 1997 .

[5]  M. Cheng,et al.  GGM02 – An improved Earth gravity field model from GRACE , 2005 .

[6]  John R. Spencer,et al.  New Horizons: The First Reconnaissance Mission to Bodies in the Kuiper Belt , 2003 .

[7]  I. Shapiro,et al.  Radar observations of Comet Halley , 1989 .

[8]  D. Plettemeier,et al.  The vertical profile of winds on Titan , 2005, Nature.

[9]  P. Edenhofer,et al.  The change of Giotto's dynamical state during the P/Grigg-Skjellerup flyby caused by dust particle impacts , 1993 .

[10]  A. Burrows,et al.  Ground-based direct detection of close-in extra-solar planets with nulling and high order adaptive optics , 2006 .

[11]  E. Kursinski,et al.  Radio range measurements of coronal electron densities at 13 and 3.6 centimeter wavelengths during the 1985 solar conjunction of Voyager 2 , 1987 .

[12]  I. Shapiro,et al.  Europa, Ganymede, and Callisto - New radar results from Arecibo and Goldstone , 1992 .

[13]  J. Miller,et al.  Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros , 2002 .

[14]  G. Leonard Tyler,et al.  Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit , 2001 .

[15]  G. L. Tyler,et al.  Oblique‐scattering radar reflectivity of the lunar surface: Preliminary results from Explorer 35 , 1968 .

[16]  C. Barbieri,et al.  First albedo determination of 2867 Steins, target of the Rosetta mission , 2006, astro-ph/0602631.

[17]  K. Aksnes,et al.  The Jacobi constant for a cometary orbiter , 2005 .

[18]  J. Spyromilio,et al.  VLT observations of comet 46P/Wirtanen , 2002 .

[19]  E. Marouf,et al.  Theory of radio occultation by Saturn's rings , 1982 .

[20]  J. Miller,et al.  A Global Solution for the Gravity Field, Rotation, Landmarks, and Ephemeris of Eros , 2002 .

[21]  H. T. Howard,et al.  Bistatic-Radar Detection of Lunar Scattering Centers with Lunar Orbiter I , 1967, Science.

[22]  J. Anderson,et al.  Discovery of Mass Anomalies on Ganymede , 2004, Science.

[23]  S. Ostro RADAR OBSERVATIONS OF ASTEROIDS AND COMETS , 1985 .

[24]  G. Tyler,et al.  Scattering properties of the Venusian surface: Preliminary results from Magellan , 1992 .

[25]  Harmon,et al.  Radar detection of the nucleus and coma of comet hyakutake , 1997, Science.

[26]  J. Veverka Polarization measurements of the Galilean satellites of Jupiter , 1971 .

[27]  O. Montenbruck,et al.  Perturbation Forces Acting on the Rosetta Spacecraft in a Close Orbit around Comet P/Wirtanen , 1996 .

[28]  H. Boehnhardt,et al.  An optimized detection technique for faint moving objects on a star-rich background A search for the nucleus of comet 46P/Wirtanen ?;?? , 1997 .

[29]  V. Eshleman The radio occultation method for the study of planetary atmospheres , 1973 .

[30]  H. Zebker,et al.  The microwave opacity of Saturn's rings at wavelengths of 3.6 and 13 cm from Voyager 1 radio occultation , 1983 .

[31]  Daniel J. Scheeres,et al.  ROSETTA mission: satellite orbits around a cometary nucleus , 1998 .

[32]  S. Asmar,et al.  Dual‐frequency radio sounding of the solar corona during the 1995 conjunction of the Ulysses spacecraft , 1995 .

[33]  G. L. Tyler,et al.  The New Horizons Radio Science Experiment (REX) , 2008 .

[34]  H. Volland,et al.  Galileo Radio Science Investigations , 1992 .

[35]  C. Barbieri,et al.  Visible spectral properties of asteroid 21 Lutetia, target of Rosetta Mission , 2004 .

[36]  O. Olsen Orbital resonance widths in a uniformly rotating second degree and order gravity field , 2006 .

[37]  H. Volland,et al.  Dynamics of the GIOTTO Spacecraft in the Inner Dust Coma of Comet P/Halley Part 2: Interpretations , 1991 .

[38]  A. Coradini,et al.  Thermal evolution model of 67P/Churyumov-Gerasimenko, the new Rosetta target , 2005 .

[39]  M. Pätzold,et al.  Determination of local surface properties using Mars Express bistatic radar , 2006 .

[40]  G. Pettengill,et al.  Comet Encke: Radar Detection of Nucleus , 1982, Science.

[41]  G. Leonard Tyler,et al.  Viking bistatic radar experiment: Summary of first-order results emphasizing north polar data , 1981 .

[42]  Farquhar,et al.  Estimating the mass of asteroid 253 mathilde from tracking data during the NEAR flyby , 1997, Science.

[43]  David E. Smith,et al.  Radio science investigations with Mars Observer , 1992 .

[44]  Rita Schulz,et al.  Rosetta target comet 67P/Churyumov-Gerasimenko: Postperihelion gas and dust production rates , 2004 .

[45]  D. Yeomans Physical interpretations from the motions of comets Halley and Giacobini-Zinner , 1986 .

[46]  J. Barriot,et al.  Radio science investigations by VeRa onboard the Venus Express spacecraft , 2006 .

[47]  G. Pettengill,et al.  Radar observations of three comets and detection of echoes from one: P/Grigg-Skjellerup , 1998 .

[48]  A. Harris,et al.  Asteroids, comets, meteors 1991 , 1992 .

[49]  J. Anderson,et al.  Mass and density determination of 140 Siwa and 4979 Otawara as expected from the Rosetta flybys. , 2001 .

[50]  G. Tyler,et al.  Radio propagation experiments in the outer solar system with Voyager , 1987, Proceedings of the IEEE.

[51]  H. U. Keller,et al.  On the stability of dust particle orbits around cometary nuclei , 1995 .

[52]  Brian G. Marsden,et al.  Catalogue of cometary orbits , 1989 .

[53]  H. T. Howard,et al.  Dual‐frequency bistatic‐radar investigations of the Moon with Apollos 14 and 15 , 1973 .

[54]  J. D. Anderson,et al.  Solar wind electron densities from Viking dual-frequency radio measurements , 1981 .

[55]  J. Anderson,et al.  Gravity Field Determination of a Comet Nucleus: Rosetta at P/Wirtanen. , 2001 .

[56]  H. Volland,et al.  The coronal electron density distribution determined from dual-frequency ranging measurements during the 1991 solar conjunction of the Ulysses spacecraft , 1994 .

[57]  G. Schubert,et al.  Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.

[58]  K. Aksnes,et al.  On the dynamical stability of the Rosetta orbiter. I. , 2006 .

[59]  H. Rickman,et al.  A catalog of observed nuclear magnitudes of Jupiter family comets , 2000 .

[60]  H. Zebker,et al.  Particle size distributions in Saturn's rings from voyager 1 radio occultation , 1983 .

[61]  Elisabetta Dotto,et al.  Asteroid target selection for the new Rosetta mission baseline: 21 Lutetia and 2867 Steins , 2005 .

[62]  I. Shapiro,et al.  Radar Observations of Comet IRAS-Araki-Alcock 1983d , 1989 .

[63]  G. Pettengill,et al.  Magellan: Electrical and Physical Properties of Venus' Surface , 1991, Science.

[64]  J. Campbell,et al.  Voyager 2 Radio Science Observations of the Uranian System: Atmosphere, Rings, and Satellites , 1986, Science.

[65]  E. Standish Planet X: No Dynamical Evidence in the Optical Observations , 1993 .

[66]  W. Eidel,et al.  The structure of Venus’ middle atmosphere and ionosphere , 2007, Nature.

[67]  K. Aksnes,et al.  Chaotic gravitational zones around a regularly shaped complex rotating body , 2006 .