Operator-Compensation Schemes Combining with Implicit Integration Factor Method for the Nonlinear Dirac Equation
暂无分享,去创建一个
[1] Rongpei Zhang,et al. A combined discontinuous Galerkin method for the dipolar Bose-Einstein condensation , 2014, J. Comput. Phys..
[2] Wen-Bo Li,et al. High-order numerical method for the derivative nonlinear Schrödinger equation , 2017, Int. J. Model. Simul. Sci. Comput..
[3] P. Dirac. The quantum theory of the electron , 1928 .
[4] W. Bao,et al. Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime , 2015, 1511.01192.
[5] W. Heisenberg. Quantum Theory of Fields and Elementary Particles , 1957 .
[6] Paul Adrien Maurice Dirac,et al. A Theory of Electrons and Protons , 1930 .
[7] C. Anderson. The Positive Electron , 1933 .
[8] Tian Jiang,et al. Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations , 2013, J. Comput. Phys..
[9] Alberto Alvarez,et al. Linearized Crank-Nicholson scheme for nonlinear Dirac equations , 1992 .
[10] Chun Li,et al. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations , 2006 .
[11] A. Geim,et al. Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.
[12] J. M. Sanz-Serna,et al. Split-step spectral schemes for nonlinear Dirac systems , 1989 .
[13] Kuo Pen-Yu,et al. The numerical study of a nonlinear one-dimensional Dirac equation , 1983 .
[14] Mario Soler,et al. Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy , 1970 .
[15] Álvarez. Spinorial solitary wave dynamics of a (1+3)-dimensional model. , 1985, Physical review. D, Particles and fields.
[16] Sihong Shao,et al. Numerical methods for nonlinear Dirac equation , 2012, J. Comput. Phys..
[17] Qing Nie,et al. Efficient semi-implicit schemes for stiff systems , 2006, J. Comput. Phys..
[18] K. Novoselov,et al. Giant Nonlocality Near the Dirac Point in Graphene , 2011, Science.
[19] C. Frønsdal,et al. Nonlinear Spinor Fields , 1951 .
[20] P. Mathieu. Soliton solutions for Dirac equations with homogeneous non-linearity in (1+1) dimensions , 1985 .
[21] Han Wang,et al. An efficient adaptive mesh redistribution method for a non-linear Dirac equation , 2007, Journal of Computational Physics.
[22] Sihong Shao,et al. Interaction for the solitary waves of a nonlinear Dirac model , 2005 .
[23] Multi-hump solitary waves of nonlinear Dirac equation , 2013, 1311.7453.
[24] Sihong Shao,et al. Higher-order accurate Runge-Kutta discontinuous Galerkin methods fora nonlinear Dirac model , 2006 .