Operator-Compensation Schemes Combining with Implicit Integration Factor Method for the Nonlinear Dirac Equation

A high-order accuracy time discretization method is developed in this paper to solve the one-dimensional nonlinear Dirac (NLD) equation. Based on the implicit integration factor (IIF) method, two schemes are proposed. Central differences are applied to the spatial discretization. The semi-discrete scheme keeps the conservation of the charge and energy. For the temporal discretization, second-order IIF method and fourth-order IIF method are applied respectively to the nonlinear system arising from the spatial discretization. Numerical experiments are given to validate the accuracy of these schemes and to discuss the interaction dynamics of the NLD solitary waves.

[1]  Rongpei Zhang,et al.  A combined discontinuous Galerkin method for the dipolar Bose-Einstein condensation , 2014, J. Comput. Phys..

[2]  Wen-Bo Li,et al.  High-order numerical method for the derivative nonlinear Schrödinger equation , 2017, Int. J. Model. Simul. Sci. Comput..

[3]  P. Dirac The quantum theory of the electron , 1928 .

[4]  W. Bao,et al.  Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime , 2015, 1511.01192.

[5]  W. Heisenberg Quantum Theory of Fields and Elementary Particles , 1957 .

[6]  Paul Adrien Maurice Dirac,et al.  A Theory of Electrons and Protons , 1930 .

[7]  C. Anderson The Positive Electron , 1933 .

[8]  Tian Jiang,et al.  Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations , 2013, J. Comput. Phys..

[9]  Alberto Alvarez,et al.  Linearized Crank-Nicholson scheme for nonlinear Dirac equations , 1992 .

[10]  Chun Li,et al.  Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations , 2006 .

[11]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[12]  J. M. Sanz-Serna,et al.  Split-step spectral schemes for nonlinear Dirac systems , 1989 .

[13]  Kuo Pen-Yu,et al.  The numerical study of a nonlinear one-dimensional Dirac equation , 1983 .

[14]  Mario Soler,et al.  Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy , 1970 .

[15]  Álvarez Spinorial solitary wave dynamics of a (1+3)-dimensional model. , 1985, Physical review. D, Particles and fields.

[16]  Sihong Shao,et al.  Numerical methods for nonlinear Dirac equation , 2012, J. Comput. Phys..

[17]  Qing Nie,et al.  Efficient semi-implicit schemes for stiff systems , 2006, J. Comput. Phys..

[18]  K. Novoselov,et al.  Giant Nonlocality Near the Dirac Point in Graphene , 2011, Science.

[19]  C. Frønsdal,et al.  Nonlinear Spinor Fields , 1951 .

[20]  P. Mathieu Soliton solutions for Dirac equations with homogeneous non-linearity in (1+1) dimensions , 1985 .

[21]  Han Wang,et al.  An efficient adaptive mesh redistribution method for a non-linear Dirac equation , 2007, Journal of Computational Physics.

[22]  Sihong Shao,et al.  Interaction for the solitary waves of a nonlinear Dirac model , 2005 .

[23]  Multi-hump solitary waves of nonlinear Dirac equation , 2013, 1311.7453.

[24]  Sihong Shao,et al.  Higher-order accurate Runge-Kutta discontinuous Galerkin methods fora nonlinear Dirac model , 2006 .