Lithography-Free, Low-Cost Method for Improving Photodiode Performance by Etching Silicon Nanocones as Antireflection Layer

A three-step process has been demonstrated to improve the performance of photodiode by creating nanocone forest on the surface of photodiode as an antireflection layer. This high-throughput, low-cost process has been shown to decrease the reflectivity by 66.1%, enhance the quantum efficiency by 27%, and increase the responsivity by 25.7%. This low-cost manufacture process can be applied to increase the responsivity of silicon based photonic devices.

[1]  G. Cody,et al.  Optical reflectance and transmission of a textured surface , 1977 .

[2]  Jing Jiang,et al.  Bimaterial microcantilevers with black silicon nanocone arrays , 2013 .

[3]  Zhida Xu,et al.  Lithography-free sub-100 nm nanocone array antireflection layer for low-cost silicon solar cell. , 2012, Applied optics.

[4]  M. Green,et al.  22.8% efficient silicon solar cell , 1989 .

[5]  W. A. G. Voss,et al.  Generalized approach to multiphase dielectric mixture theory , 1973 .

[6]  A. Chikouche,et al.  Design and simulation of antireflection coating systems for optoelectronic devices : Application to silicon solar cells , 1998 .

[7]  Manijeh Razeghi,et al.  Narrow-gap semiconductor photodiodes , 2000, Photonics West.

[8]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[9]  Aron Walsh,et al.  Experimental and theoretical optical properties of methylammonium lead halide perovskites. , 2016, Nanoscale.

[10]  N. Litchinitser,et al.  Spinning light on the nanoscale. , 2014, Nano letters.

[11]  Stuart Brand,et al.  A new quantitative optical biosensor for protein characterisation. , 2003, Biosensors & bioelectronics.

[12]  J. Eden,et al.  Probing plasma–surface interactions with the transmission electron microscope or the Si–collector interface of the plasma bipolar junction transistor , 2013 .

[13]  Shriram Ramanathan,et al.  Correlated Electron Materials and Field Effect Transistors for Logic: A Review , 2012, 1212.2684.

[14]  Yi Cui,et al.  Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching , 2008 .

[15]  Sailing He,et al.  Ultrabroadband strong light absorption based on thin multilayered metamaterials , 2013, 1306.3289.

[16]  E. Mazur,et al.  MICROSTRUCTURING OF SILICON WITH FEMTOSECOND LASER PULSES , 1998 .

[17]  Thomas Kirchartz,et al.  Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells , 2015 .

[18]  N. Pan,et al.  Predictions of effective physical properties of complex multiphase materials , 2008 .

[19]  Ralph G Nuzzo,et al.  Black silicon solar thin-film microcells integrating top nanocone structures for broadband and omnidirectional light-trapping , 2014, Nanotechnology.

[20]  Sailing He,et al.  Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber , 2015 .

[21]  Zhida Xu,et al.  Monolithic Integrations of Slanted Silicon Nanostructures on 3D Microstructures and Their Application to Surface Enhanced Raman Spectroscopy , 2014, 1402.1739.

[22]  Martin A. Green,et al.  Optimized antireflection coatings for high-efficiency silicon solar cells , 1991 .