Nanomaterialien für wiederaufladbare Lithiumbatterien

[1]  Fan Zhang,et al.  Colloidal-Crystal-Templated Synthesis of Ordered Macroporous Electrode Materials for Lithium Secondary Batteries , 2003 .

[2]  B. Dunn,et al.  C-MEMS for the Manufacture of 3D Microbatteries , 2004 .

[3]  T. Yokoshima,et al.  Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries , 2003 .

[4]  B. Scrosati,et al.  Superacid ZrO2-added, composite polymer electrolytes with improved transport properties , 2006 .

[5]  Marie-Liesse Doublet,et al.  Electrochemical Reactivity and Design of NiP2 Negative Electrodes for Secondary Li-Ion Batteries , 2005 .

[6]  John R. Owen,et al.  A High-Performance Supercapacitor/Battery Hybrid Incorporating Templated Mesoporous Electrodes , 2003 .

[7]  Ganesan Nagasubramanian,et al.  Electrical characterization of all-solid-state thin film batteries , 2004 .

[8]  P. Balaya,et al.  Nano-ionics in the context of lithium batteries , 2006 .

[9]  Feng Jiao,et al.  Mesoporous Crystalline β‐MnO2—a Reversible Positive Electrode for Rechargeable Lithium Batteries , 2007 .

[10]  J. Tarascon,et al.  From the vanadates to 3d-metal oxides negative electrodes , 2000 .

[11]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[12]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[13]  Yuyan Shao,et al.  Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges , 2007 .

[14]  P. Bruce,et al.  Layered LixMn1-yCoyO2 Intercalation ElectrodesInfluence of Ion Exchange on Capacity and Structure upon Cycling , 2001 .

[15]  P. Bruce,et al.  Ionic conductivity in crystalline polymer electrolytes , 2001, Nature.

[16]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[17]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[18]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[19]  P. Bruce,et al.  New intercalation compounds for lithium batteries: layered LiMnO2 , 1999 .

[20]  Yingke Zhou,et al.  Sol–gel template synthesis and structural properties of a highly ordered LiNi0.5Mn0.5O2 nanowire array , 2002 .

[21]  M. Wohlfahrt‐Mehrens,et al.  A Safe, Low-Cost, and Sustainable Lithium-Ion Polymer Battery , 2004 .

[22]  P. Bruce,et al.  Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb. , 2003, Journal of the American Chemical Society.

[23]  Joachim Maier,et al.  Second Phase Effects on the Conductivity of Non‐Aqueous Salt Solutions: “Soggy Sand Electrolytes” , 2004 .

[24]  Venkat Srinivasan,et al.  Existence of path-dependence in the LiFePO4 electrode , 2006 .

[25]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[26]  J. Tarascon,et al.  Combining electrochemistry and metallurgy for new electrode designs in Li-ion batteries , 2005 .

[27]  P. Bruce,et al.  Increasing the conductivity of crystalline polymer electrolytes , 2005, Nature.

[28]  J. Epping,et al.  Nucleation and growth of zeolites and inorganic mesoporous solids: Molecular insights from magnetic resonance spectroscopy , 2006 .

[29]  Josh Thomas A spectacularly reactive cathode , 2003, Nature materials.

[30]  J. Goodenough,et al.  Effect of ball-milling on 3-V capacity of lithium-manganese oxospinel cathodes , 2001 .

[31]  P. Bruce,et al.  Conductivity and transference number measurements on polymer electrolytes , 1988 .

[32]  L. Nazar,et al.  Reversible lithium uptake by CoP3 at low potential: role of the anion , 2002 .

[33]  Joachim Maier,et al.  Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries , 2003 .

[34]  John T. Vaughey,et al.  Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study , 2001 .

[35]  Yong-Mook Kang,et al.  Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. , 2007, Angewandte Chemie.

[36]  B. Scrosati,et al.  Nanocomposite Lithium Ion Conducting Membranes , 2003, Annals of the New York Academy of Sciences.

[37]  B. Scrosati,et al.  The Ni3Sn4 intermetallic as a novel electrode in lithium cells , 2005 .

[38]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[39]  S. Ye,et al.  Synthesis and electrochemical properties of LiMn2O4 spinel phase with nanostructure , 2004 .

[40]  J. Owen,et al.  Lithium insertion into TiO2 from aqueous solution – Facilitated by nanostructure , 2006 .

[41]  Bruce Dunn,et al.  3-D Microbatteries , 2003 .

[42]  B. Dunn,et al.  V2O5 aerogel as a versatile host for metal ions , 2004 .

[43]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[44]  B. Scrosati,et al.  Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries , 2006 .

[45]  T. Osaka,et al.  Optimized Sn/SnSb lithium storage materials , 2004 .

[46]  Lisa C. Klein,et al.  Electrochemistry of Cu3N with Lithium: A Complex System with Parallel Processes , 2003 .

[47]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .

[48]  Thomas Gennett,et al.  High-energy, rechargeable Li-ion battery based on carbon nanotube technology , 2004 .

[49]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[50]  G. Magnacca,et al.  Microcalorimetric Characterization of Structural and Chemical Heterogeneity of Superacid SO4/ZrO2 Systems† , 1997 .

[51]  J. Tarascon,et al.  A reversible copper extrusion–insertion electrode for rechargeable Li batteries , 2003, Nature materials.

[52]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[53]  Yi Cui,et al.  Fast, completely reversible li insertion in vanadium pentoxide nanoribbons. , 2007, Nano letters.

[54]  J. Dahn,et al.  Isotropic Volume Expansion of Particles of Amorphous Metallic Alloys in Composite Negative Electrodes for Li-Ion Batteries , 2007 .

[55]  Xueping Gao,et al.  Do composite single-walled nanotubes have enhanced capability for lithium storage? , 2005 .

[56]  Bruno Scrosati,et al.  Structured Silicon Anodes for Lithium Battery Applications , 2003 .

[57]  K A Mkhoyan,et al.  Sidewall oxide effects on spin-torque- and magnetic-field-induced reversal characteristics of thin-film nanomagnets. , 2008, Nature materials.

[58]  L. Nazar,et al.  Reversible Lithium Uptake by FeP2 , 2003 .

[59]  Y. Chiang,et al.  Self‐Assembling Colloidal‐Scale Devices: Selecting and Using Short‐Range Surface Forces Between Conductive Solids , 2007 .

[60]  R. Gillespie Fluorosulfuric acid and related superacid media , 1968 .

[61]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[62]  S. Passerini,et al.  Lithium ion insertion in porous metal oxides , 1999 .

[63]  A. R. Armstrong,et al.  TiO2‐B Nanowires , 2004 .

[64]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[65]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[66]  Feng Jiao,et al.  Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. , 2005, Angewandte Chemie.

[67]  Paul A. Nelson,et al.  Development of a high-power lithium-ion battery , 1998 .

[68]  Zaiping Guo,et al.  Nanomaterials for lithium-ion rechargeable batteries. , 2006, Journal of nanoscience and nanotechnology.

[69]  Michael M. Thackeray,et al.  Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .

[70]  T. Gustafsson,et al.  Lithium insertion into vanadium oxide nanotubes : Electrochemical and structural aspects , 2006 .

[71]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[72]  Bruno Scrosati,et al.  Physical and chemical properties of nanocomposite polymer electrolytes , 1999 .

[73]  Bruno Scrosati,et al.  Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells. , 2005, Chemical record.

[74]  Sheikh A. Akbar,et al.  Pyrolysis of Negative Photoresists to Fabricate Carbon Structures for Microelectromechanical Systems and Electrochemical Applications , 2002 .

[75]  P. Bruce,et al.  TiO2(B) Nanowires as an Improved Anode Material for Lithium‐Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte , 2006 .

[76]  B. Scrosati,et al.  Advanced, lithium batteries based on high-performance composite polymer electrolytes , 2006 .

[77]  Yang Shao-Horn,et al.  Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice Imaging , 1999 .

[78]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[79]  G. Amatucci,et al.  Bismuth Fluoride Nanocomposite as a Positive Electrode Material for Rechargeable Lithium Batteries , 2005 .

[80]  P. Bruce,et al.  Lix(Mn1-yCoy)O2 intercalation compounds as electrodes for lithium batteries : influence of ion exchange on structure and performance , 2001 .

[81]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[82]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[83]  Yasuo Takeda,et al.  Carbon Fiber as a Negative Electrode in Lithium Secondary Cells , 1992 .

[84]  P. Bruce,et al.  Nanotubes with the TiO2-B structure. , 2005, Chemical communications.

[85]  I. Hsing,et al.  An improved anodic bonding process using pulsed voltage technique , 2000, Journal of Microelectromechanical Systems.

[86]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[87]  Y. Chiang,et al.  Origin of Cycling Stability in Monoclinic‐ and Orthorhombic‐Phase Lithium Manganese Oxide Cathodes , 1999 .

[88]  Nathalie Pereira,et al.  Carbon-Metal Fluoride Nanocomposites Structure and Electrochemistry of FeF3: C , 2003 .

[89]  B. Scrosati,et al.  Transport and interfacial properties of composite polymer electrolytes , 2000 .

[90]  Michael Thackeray,et al.  Lithium-ion batteries: An unexpected conductor. , 2002, Nature materials.

[91]  P. Bruce,et al.  Nonstoichiometric layered LixMnyO2 with a high capacity for lithium intercalation/deintercalation , 2002 .

[92]  M. M. Thackeray Lithium-ion batteries : an unexpected advance. , 2002 .

[93]  P. Bruce,et al.  Factors influencing the conductivity of crystalline polymer electrolytes. , 2007, Faraday discussions.

[94]  Christian Masquelier,et al.  Size Effects on Carbon-Free LiFePO4 Powders The Key to Superior Energy Density , 2006 .