Statistics and Data Science: Research School on Statistics and Data Science, RSSDS 2019, Melbourne, VIC, Australia, July 24–26, 2019, Proceedings

[1]  Anna Nowogrodzki,et al.  How to support open-source software and stay sane , 2019, Nature.

[2]  S. Greenland,et al.  Scientists rise up against statistical significance , 2019, Nature.

[3]  Fiona Fidler,et al.  Reproducibility of Scientific Results , 2018 .

[4]  J. Ioannidis,et al.  Reproducible research practices, transparency, and open access data in the biomedical literature, 2015–2017 , 2018, PLoS biology.

[5]  F. Fidler,et al.  Questionable research practices in ecology and evolution , 2018, PloS one.

[6]  Richard M. Huggins,et al.  Two-stage approaches to the analysis of occupancy data II. The heterogeneous model and conditional likelihood , 2018, Comput. Stat. Data Anal..

[7]  R. Huggins,et al.  Two-stage approaches to the analysis of occupancy data I: the homogeneous case (analysis of occupancy data) , 2018, Communications in Statistics - Theory and Methods.

[8]  Ben Marwick,et al.  Packaging Data Analytical Work Reproducibly Using R (and Friends) , 2018 .

[9]  Jennifer Bryan,et al.  Excuse Me, Do You Have a Moment to Talk About Version Control? , 2018, PeerJ Prepr..

[10]  Hilary S. Parker,et al.  Opinionated analysis development , 2017 .

[11]  Lex Nederbragt,et al.  Good enough practices in scientific computing , 2016, PLoS Comput. Biol..

[12]  Francisco Rodríguez-Sánchez,et al.  Ciencia reproducible: qué, por qué, cómo , 2016 .

[13]  Gideon Nave,et al.  Evaluating replicability of laboratory experiments in economics , 2016, Science.

[14]  Brian A. Davey,et al.  The Homomorphism Lattice Induced by a Finite Algebra , 2016, Order.

[15]  N. Karavarsamis METHODS FOR ESTIMATING OCCUPANCY , 2015, Bulletin of the Australian Mathematical Society.

[16]  Thomas G. Dietterich,et al.  Penalized likelihood methods improve parameter estimates in occupancy models , 2015 .

[17]  Thomas W. Yee,et al.  The VGAM Package for Capture-Recapture Data Using the Conditional Likelihood , 2015 .

[18]  R. Lanfear,et al.  The Extent and Consequences of P-Hacking in Science , 2015, PLoS biology.

[19]  Onyedikachi O. John Robustness of Quantile Regression to Outliers , 2015 .

[20]  Achim Zeileis,et al.  CRAN Task Views , 2015 .

[21]  T. Hothorn,et al.  Understanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression , 2013, PloS one.

[22]  Geoffrey W. Heard,et al.  Comparison of Four Bootstrap‐Based Interval Estimators of Species Occupancy and Detection Probabilities , 2013 .

[23]  T. Kneib Beyond mean regression , 2013 .

[24]  J. Einbeck Discussion of ‘Beyond mean regression’ , 2013 .

[25]  W. Manning,et al.  Thinking beyond the mean: a practical guide for using quantile regression methods for health services research , 2013, Shanghai archives of psychiatry.

[26]  D. Lindenmayer,et al.  Fitting and Interpreting Occupancy Models , 2013, PloS one.

[27]  Ian M. Mitchell,et al.  Best Practices for Scientific Computing , 2012, PLoS biology.

[28]  Ian M. Mitchell,et al.  Reproducible research for scientific computing: Tools and strategies for changing the culture , 2012, Computing in Science & Engineering.

[29]  R. Peng Reproducible Research in Computational Science , 2011, Science.

[30]  J. Andrew Royle,et al.  Accounting for non‐independent detection when estimating abundance of organisms with a Bayesian approach , 2011 .

[31]  Kiva L. Oken,et al.  A Bayesian hierarchical occupancy model for track surveys conducted in a series of linear, spatially correlated, sites , 2011 .

[32]  Richard B. Chandler,et al.  unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance , 2011 .

[33]  D. Richardson,et al.  Defining optimal sampling effort for large-scale monitoring of invasive alien plants: a Bayesian method for estimating abundance and distribution. , 2011 .

[34]  David L Donoho,et al.  An invitation to reproducible computational research. , 2010, Biostatistics.

[35]  Byron J. T. Morgan,et al.  Design of occupancy studies with imperfect detection , 2010 .

[36]  T. Yee The VGAM Package for Categorical Data Analysis , 2010 .

[37]  Christian Terwiesch,et al.  The Impact of Work Load on Service Time and Patient Safety: An Econometric Analysis of Hospital Operations , 2009, Manag. Sci..

[38]  Darryl I MacKenzie,et al.  Modeling species occurrence dynamics with multiple states and imperfect detection. , 2009, Ecology.

[39]  Yves Bertot,et al.  A Short Presentation of Coq , 2008, TPHOLs.

[40]  J. Andrew Royle,et al.  Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities , 2008 .

[41]  Olivier Gimenez,et al.  State-space modelling of data on marked individuals , 2007 .

[42]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[43]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[44]  R. Jackson Inequalities , 2007, Algebra for Parents.

[45]  M. Sørensen,et al.  Lectures on the Curry-Howard Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics) , 2006 .

[46]  J Andrew Royle,et al.  Site Occupancy Models with Heterogeneous Detection Probabilities , 2006, Biometrics.

[47]  D. MacKenzie Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence , 2005 .

[48]  C. Murray How to Accuse the Other Guy of Lying with Statistics , 2005 .

[49]  D. MacKenzie WHAT ARE THE ISSUES WITH PRESENCE–ABSENCE DATA FOR WILDLIFE MANAGERS? , 2005 .

[50]  Brendan A. Wintle,et al.  PRECISION AND BIAS OF METHODS FOR ESTIMATING POINT SURVEY DETECTION PROBABILITIES , 2004 .

[51]  Brendan A. Wintle,et al.  The Use of Bayesian Model Averaging to Better Represent Uncertainty in Ecological Models , 2003 .

[52]  J. Andrew Royle,et al.  ESTIMATING ABUNDANCE FROM REPEATED PRESENCE–ABSENCE DATA OR POINT COUNTS , 2003 .

[53]  J. Andrew Royle,et al.  ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE , 2002, Ecology.

[54]  D. Hall Zero‐Inflated Poisson and Binomial Regression with Random Effects: A Case Study , 2000, Biometrics.

[55]  Dean Phillips Foster,et al.  Calibration and empirical Bayes variable selection , 2000 .

[56]  Andrew Pickering,et al.  The mangle of practice : time, agency, and science , 1997 .

[57]  J. Tukey More honest foundations for data analysis , 1997 .

[58]  J. L. Heilbron,et al.  Leviathan and the air-pump. Hobbes, Boyle, and the experimental life , 1989, Medical History.

[59]  R. Huggins On the statistical analysis of capture experiments , 1989 .

[60]  Per Martin-Löf,et al.  Constructive mathematics and computer programming , 1984 .

[61]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[62]  D. Herrmann Proofs And Refutations The Logic Of Mathematical Discovery , 2016 .

[63]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[64]  Jonathan M. Borwein,et al.  SIAM: “Setting the Default to Reproducible” in Computational Science Research , 2013 .

[65]  Hadley Wickham,et al.  testthat: Get Started with Testing , 2011, R J..

[66]  Richard A. Parker,et al.  WinBUGS for population ecologists: bayesian modeling using markov chain Monte Carlo methods , 2009 .

[67]  A. Burchard,et al.  A Short Course on Rearrangement Inequalities , 2009 .

[68]  Susan Haack,et al.  Defending Science -- Within Reason : Between Scientism and Cynicism , 2003 .

[69]  R. Merton,et al.  On social structure and science , 1996 .

[70]  B. Davey,et al.  Introduction to lattices and order , 1990 .

[71]  Benjamin S. Baumer,et al.  Tidy data , 2022, Modern Data Science with R.