Internet of Things (loT) is network connected “Things” such as vehicles, buildings, embedded systems, sensors, as well as people. IoT enables these objects to collect and exchange data of interest to complete various tasks including patient health monitoring, environmental monitoring, system condition prognostics and prediction, smart grid, smart buildings, smart cities, and do on. Due to the large scale of and the limited host processor computation power in an IoT system, effective security provisioning is shifting from software-based security implementation to hardware-based security implementation in terms of efficiency and effectiveness. Moreover, FPGA can take over the work of infrastructure components to preserve and protect critical components and minimize the negative impacts on these components. In this paper, we employ Xilinx Zynq-7000 Series System-on-Chip (SoC) ZC706 prototype board to design an IoT device. To defend against threats to FPGA design, we have studied Zynq-ZC706 to (1) encrypt FPGA bitstream to protect the IoT device from bitstream decoding; (2) encrypt system boot image to enhance system security; and (3) ensure the FPGA operates correctly as intended via authentication to avoid spoofing and Trojan Horse attacks.
[1]
Giovanni Vigna,et al.
A stateful intrusion detection system for World-Wide Web servers
,
2003,
19th Annual Computer Security Applications Conference, 2003. Proceedings..
[2]
Prasun Ghosal,et al.
Hardware Implementation of TDES Crypto System with On Chip Verification in FPGA
,
2010,
ArXiv.
[3]
Iosr Journals,et al.
FPGA Based System Login Security Lock Design Using Finite State Machine
,
2013
.
[4]
Vern Paxson,et al.
Bro: a system for detecting network intruders in real-time
,
1998,
Comput. Networks.